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Abstract: In this paper, we introduce a monitoring method for flow expansion and contraction in a
simple flow phantom based on electrical resistance changes in an epidermal strain sensor attached
to the phantom. The flow phantom was fabricated to have a nonflat surface and small modulus
that are analogous to human skin. The epidermal sensors made of polydopamine and polyvinyl
alcohol show sufficient linearity (R = 0.9969), reproducibility, and self-adhesion properties, as well
as high sensitivity to small modulus measurements (<1% tensile strain). Pulsatile flow monitoring
experiments were performed by placing the epidermal sensor on the flow phantom and measuring
the relative changes in resistance by the heartbeat. Experiments were conducted for three types
of vessel diameters (1.5, 2, and 3 mm). In each of the experiments, the vessels were divided into
Top, Middle, and Bottom positions. Experiments for each position show that the relative changes
in resistance increase proportionally with the diameter of the vessel. The vessels located close to
the epidermal layer have greater relative electrical changes. The results were analyzed using the
Bernoulli equation and hoop stress formula. This study demonstrates the feasibility of a noninvasive
flow monitoring method using a novel resistive strain sensor.

Keywords: flow monitoring; flow parameters; noninvasive measurement; pulsatile flow; strain sensor

1. Introduction

In hemodynamics, the Hagen–Poiseuille equation, Navier–Stokes equation, and
Bernoulli’s law explain the relationships among vessel diameter, vessel resistance, and
pressure difference. The Poiseuille equation shows that the resistance of the blood vessel
has an inversely proportional relationship with the fourth power of the vessel diameter [1].
In the Navier–Stokes equation and Bernoulli’s law, the pressure differences in a given
streamline are numerically explained as being proportional to the blood vessel diame-
ters [2]. These laws demonstrate that vascular information, including vessel resistance,
blood flow velocity, and blood pressure differences, can be predicted by monitoring the
changes in the vessel diameters.

Conventional methods for monitoring blood flow include Doppler flowmetry [3,4],
spectroscopy [5,6], sonography [7,8], computed tomography [9], electrical capacitance [10],
photon attenuation [11], and ultrasound [12], which are used to visualize or analyze vessel
structures as well as fluid flow. These methods are commonly used in hospitals as the
instruments are expensive, have complicated operations, and require trained operators for
accurate analyses [13]. Recently, researchers have proposed implantable sensors that can
be placed over the blood vessels to continuously monitor the vessel diameters [13] or blood
flow [14,15]. The implantable sensor involves catheter insertion directly into the vessel [16]
or wrapping around the blood vessel [17–19] to obtain the vessel structure. This sensor can
obtain information about the vessel structure and blood flow continuously. These methods
should generally be used only on patients who have received vascular surgery or another
form of surgery for sensor implantation; moreover, additional surgical procedures may be
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required to remove these sensors [13–17]. However, none of these methods address general
measurements exclusive of the patients.

During the past decade, strain sensors have been widely used to measure blood
pressure, blood flow, and pulse waves [13,18,20–23]. Table 1 compares the relative merits
and characteristics of each of these techniques. Researchers place the strain sensors on the
epidermis and measure the subtle deformations of the skin caused by cardiac output [20,21].
Resistive strain sensors have suitable characteristics, including a simple fabrication process,
a high gauge factor, and an abundant material source for biocompatibility, for epidermal
applications [24]. The method of measuring cardiovascular function using the strain sensor
is critical to continuous vessel monitoring but is yet to be investigated in depth.

Table 1. Comparison of methods to monitor blood flow.

Type Surgical Process Cost Trained
Operator Characteristics

Doppler
flowmetry Unnecessary High Needed High accuracy

Complicated operation

Spectroscopy Unnecessary High Needed High accuracy
Complicated operation

Computed
tomography Unnecessary High Needed High accuracy

Complicated operation

Implantable
sensor Needed Low Unnecessary High accuracy

Fiber Bragg
Grating sensor Unnecessary Low Unnecessary Need calculation

Epidermal
sensor Unnecessary Low Unnecessary Easy operation

Herein, we propose a method for monitoring vasodilation and vasoconstriction by
measuring the electrical resistances using epidermal strain sensors attached to a simple flow
phantom. We measured the pressure changes transmitted to the skin through contraction
and expansion of the flow phantom with polydopamine (PDA) strain sensors [25] and
measured the changes in resistance values depending on the diameter and position (depth
from epidermis) of the vessels. The originality of our study is that the developed strain
sensor measures tension signals by pressure changes as well as enables flow monitoring
noninvasively. In addition, we not only demonstrate the electrical characteristics of the
strain sensor, including reproducibility and response time, but also acquire the relative
electrical resistance changes during pulsatile flows for tubes with different diameters using
a simple flow phantom model. Using this methodology, we demonstrate that there is
potential for continuous, efficient, and noninvasive monitoring of flow changes in vivo.

2. Numerical Principle of Measurement

Figure 1 shows the schematic for the vasodilation and vasoconstriction measurement
method using the epidermal strain sensors. The fluid flow in the vessels inside the phantom
causes structural changes in the vessels. The pressure transmitted to the skin phantom by
these structural changes in the vessels can be approximated by Equation (1):

PTotal = Pout − Pphantom (1)

where PTotal is the pressure transmitted to the skin phantom, Pout is the pressure produced
in the vessel by the fluid, and Pphantom is the pressure exerted by the phantom on the vessels.
PTotal causes strain sensor deformation, inducing changes in electrical resistance. Each layer
of the skin and vessels in the simple flow phantom have similar mechanical properties
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to those of human skin and vessels [26–29]. Thus, Pphantom can be obtained through the
phantom thickness of each layer and the material composition ratio of the phantom.
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Figure 1. Conceptual illustration of measuring vessel diameter changes using the epidermal strain sensor. Blue boxes in the
picture represent cross sections of vessels. Green boxes represent one quarter of the cross sections of the vessels. Yellow
arrows in the blue boxes represent the diameters of the vessels. White arrows in the green boxes indicate the thickness of
the vessels.

Pout continuously changes with the flow. In a cylindrical vessel with laminar flow,
a Newtonian liquid is used to calculate the pressure difference and flow according to
changes in the vessel diameter [30]. To observe the linear relationship between the flow
and pressure difference, water is used as the representative Newtonian fluid as it is the
most attractive option for producing pulsatile fluid flow in the phantom [31]. Using a
syringe pump, a periodic pulsatile fluid flow is established in the vessels. The pulsatile
flow induces changes in the diameter and creates pressure differences in the vessels. The
Poiseuille equation can be used to expresses this relation as [1,32]

Q =
πd4∆p
128µL

(2)

where d is the vessel diameter, ∆p is the pressure difference between the two ends of the
vessel, µ is the dynamic viscosity, and L is the length of the vessel. Thus, the changes in
flow control the contractions and expansions of the vessels inside the phantom.

To describe the fluid dynamics of incompressible and Newtonian fluids flowing within
the phantom, the Navier–Stokes equation is used as follows:

ρ

[
∂v
∂t

+ (v · ∇)v
]
= −∇p + ρg + µ∇2v (3)

where ρ is the density of the fluid, v is the mean fluid velocity vector, p is the dynamic
pressure, µ is the dynamic viscosity, and g is the gravitational acceleration. These terms
indicate that the acceleration of a fluid depends on the pressure (−∇p), volume force (ρg),
and viscous shear stress (µ∇2v). The Navier–Stokes equation numerically expresses the
conservation of mass, momentum, and energy in the dynamic fluid. This equation can be
simplified using Bernoulli’s law by excluding viscosity from the pressure gradient and
flow rate. Figure 2 shows the variations in flow velocity and pressure depending on the
diameter of the vessel for a given streamline. By Bernoulli’s law, the sum of all forms of
energy in the streamline for a flowing fluid is constant and can be expressed as

P1 +
1
2

ρv1
2 + ρgh1 = P2 +

1
2

ρv2
2 + ρgh2 (4)
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where P1, P2 are the pressures at two points in the vessel with corresponding flow rates v1,
v2, and heights h1, h2 from a common horizontal ground plane, respectively. Equation (4)
can now be expressed as [33]

P +
1
2

ρv2 = constant (5)

because ρgh1 and ρgh2 along any particular streamline are negligible. Thus, as the vessel
diameter increases, the cross-sectional area of the vessel increases, and the flow rate
decreases. Owing to the decreased flow velocity, the kinetic energy ( 1

2 ρv2) decreases and
pressure increases to maintain constant overall energy. Therefore, Pout continues to change
as the diameter of the vessel changes.
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Figure 2. Bernoulli’s law in the vessel.

When the pressure injected into the vessel is equal, Pout is explained by the hoop
stress of the vessel. If the wall thickness of the vessel is no more than one-twentieth of its
diameter, the thin-walled assumption is valid. In the thin-walled cylindrical tube, for an
injected fluid flow, pressure is generated and transmitted to the wall of the tube; this is
called the hoop stress of the tube and is calculated using the following equation [34]:

σθ =
piD
2t

(6)

where σθ is the hoop stress, D is the tube diameter, pi is the pressure of the fluid flow,
and t is the wall thickness. Thus, the diameter of the vessel, pressure, and wall thickness
determine the hoop stress [35]. If the same pi is applied to other vessels with the same
wall thicknesses, for a larger diameter, the hoop stress is greater [35]. Therefore, the vessel
diameter can be predicted by comparing the hoop stresses at a given pressure.

3. Methods and Experimental Setup
3.1. Simple Flow Phantom

The structural and biophysical characteristics of human skin can be defined by its
acoustic, optical, and mechanical properties. Because the epidermal sensor operation is
based on the mechanical properties of the phantom, the fabrication of phantoms, including
all of their characteristics, is excessive for monitoring vessels with the epidermal sensor.
In this study, we fabricated three simple flow phantoms with vessel diameters of 1.5 mm,
2 mm, and 3 mm by considering the mechanical properties. Each flow phantom included
polyvinyl alcohol (PVA) tubes [36] at different distances from the bottom of the phantom,
as shown in Figure 3: 17 mm (Bottom), 19 mm (Middle), and 23 mm (Bottom). For adults,
the vessels on the face are usually 1–3.6 mm in diameter [13,37], carotid vessels are mainly
2–3 mm in diameter [38], and blood vessels on the arms are less than 4 mm in diame-
ter [39,40]; thus, we choose the diameter of the representative vessels in this experiment as
1.5 mm, 2 mm, and 3 mm, respectively. The tube thickness is approximately 0.1 mm and is
constant in all vessels. Figure 3 shows the overall diagram of the phantom. The flow phan-
tom consists of four layers: base layer, hypodermis, dermis, and epidermis [26]. Table 2
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summarizes the composition of the flow phantom for each layer. In addition, Table 3 shows
the Young’s modulus for each layer of the phantom and human skin.
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Table 2. Composition of the flow phantom.

Phantom
Layer Epidermis Dermis Hypodermis Base Layer

Gelatin (wt%) 5 24 2 8

Agar (wt%) - 1 0.2 -

Other 5 wt%
glycerol

1 wt%
1,2-hexanediol

1 wt%
1,2-hexanediol,

Vessel
(single layer)

1 wt%
1,2-hexanediol

Table 3. Young’s modulus for each layer of the simple flow phantom and human skin.

Skin Layer Epidermis Dermis Hypodermis Reference

Young’s
Modulus

@ Phantom
(kPa)

850–1100
(ε < 0.2)

(
.
ε = 10−1s−1)

47–53
(ε < 0.1)( .

ε = 10−1s−1)
1.38–2.13
(ε < 0.1)( .

ε = 10−1s−1) [26]

Young’s
Modulus
@ Human

(kPa)

1000
(forearm)

56
(forearm)

2
(forearm) [27–29]

First, to prepare the simple flow phantom, we used an acrylic container to stack each
layer. The inner dimensions of the acrylic container were 32 mm × 120 mm × 35 mm
(height × width × depth). Vessel-sized holes were then drilled at 30 mm intervals on
the longer wall of the acrylic container at heights of 17 mm, 19 mm, and 23 mm from
the bottom of the container (i.e., Bottom, Middle, and Top positions, respectively). The
base layer was composed of 8 wt% gelatin (G1890-Type A, Sigma-Aldrich, St. Louis, MO,
USA), 1 wt% 1,2-hexanediol (213691, Sigma-Aldrich, St. Louis, MO, USA), and deionized
distilled water (DW). The base layer solution was mixed for 2 h at 2000 RPM using a
homogenizer at 60 ◦C DW. The homogeneously mixed base layer solution was stacked in
the acrylic container to a thickness of 15 mm. The container was then sealed to prevent
air bubbles in the solution and allowed to cool to ambient temperatures in the range of
26 ◦C to 27 ◦C. When the base layer was fully gelled, the vessel phantoms (Single layer
type, WetLab, Japan) connected to the syringe dispenser were inserted into the holes of
the acrylic container and fixed. The vessel phantoms were placed in the hypodermis layer,
which was composed of 2 wt% gelatin, 0.2 wt% agar (A1296, Sigma-Aldrich, St. Louis, MO,
USA), 1 wt% 1,2-hexanediol, and DW, and the solution was mixed for 2 h at 2000 RPM
using the homogenizer at 60 ◦C DW. The solution was then sealed and allowed to cool to
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40 ◦C. Before the solution gelled completely, the solution was poured over the base layer to
a thickness of 10 mm to submerge the vessel phantom. The dermis layer was composed of
24 wt% gelatin, 1 wt% agar, 1 wt% 1,2-hexanediol, and DW, and this solution was mixed
for 2 h at 3000 RPM using a homogenizer at 60 ◦C DW. The prepared solution was cooled
to 40 ◦C and poured over the hypodermis to ensure that the dermis layer had a thickness
of 1 mm. Finally, the epidermis layer was prepared with 0.1 g/mL of gelatin, 0.05 g/mL of
glycerol (49781, Sigma-Aldrich, St. Louis, MO, USA), 0.1 wt% of 1,2-hexanediol, and DW,
and the solution was spread over the dermis layer to a thickness of 0.1 mm.

3.2. Epidermal Strain Sensor

The pulsatile fluid in the vessel generates pressure, which is then transmitted to the
epidermal layer. The goal of the epidermal strain sensor is to measure the microstrain (<1%
tensile strain) delivered by the pressure to the epidermal layer. For accurate measurement,
the epidermal sensor was attached directly and without separation to the phantom because
the epidermis has a nonflat surface. We used epidermal strain sensors with self-adhesive
patches that could detect microstrains transmitted to the skin. The epidermal sensors con-
sist of polydopamine (PDA) and polyvinyl alcohol (PVA; 341584, Sigma-Aldrich, St. Louis,
MO, USA) [25]. The use of PDA, a mussel-inspired substance, promotes uniform distri-
bution within a hydrogel and allows excellent adhesion to various surfaces regardless
of the chemical properties of the material [41]. The sensor using PDA has self-adhesion
characteristics, which attaches well to human as well as porcine skin (gelatin) [25,41].

Figure 4 depicts the entire process of sensor fabrication. Dopamine forms PDA chains
by polymerizing in the alkaline condition. Dopamine hydrochloride (DA; H8502, Sigma-
Aldrich, St. Louis, MO, USA) was added to the buffer solution (109460, Sigma-Aldrich,
St. Louis, MO, USA) at a pH of 8 to achieve polymerization at 60 ◦C for 24 h to prepare
PDA. The DA to buffer solution mass ratio is 15 (DA/buffer solution = 15 wt%). After the
polymerization process, the PDA is cooled to ambient temperature. The PVA solution is
a mixture of PVA powder and DW at a ratio of 10 wt%. The homogenizer stirs the PVA
solution at 2000 RPM at 95 ◦C for 2 h. When the PVA solution forms an opaque gel, it
is cooled to ambient temperature. The sodium tetraborate solution (Borax; 221732, 99%
purity, Sigma-Aldrich, St. Louis, MO, USA) used here is a mixture of sodium tetraborate
and DW at a ratio of 8 wt%. The homogenizer stirs the Borax at 3000 RPM at 60 ◦C for 2 h.
The prepared PVA and PDA solutions are then mixed in a mass ratio of 1:9. The Borax is
then slowly poured into the homogenously mixed solution of PDA/PVA at a mass ratio of
6:1 (PDA/PVA: Borax = 6:1). When the solution is mixed, it changes to gel form. To remove
trapped air from the gel, we sealed the gel in a glass bottle and ultrasonicated the mixture
for 4 h. When the process of ultrasonication is complete, the hydrogel of the epidermal
sensor is obtained.

Figure 4e presents a schematic of the encapsulation process for the epidermal strain
sensor. The gel-type sensor is encapsulated within acrylic tape (VHB-4910, 3M, Maplewood,
MN, USA) to measure the sensor characteristics, including linearity, response time, and
reproducibility. First, the acrylic tape is prepared by cutting strips of 1 mm × 70 mm ×
15 mm (height × width × depth). Then, the copper tape (1181, 3M, Maplewood, MN,
USA) is attached to the acrylic tape and connected to 8 AWG wires. The acrylic tape is
placed over 1 mm × 70 mm × 5 mm (height × width × depth) areas on both sides of
the acrylic tape to form a groove. The epidermal sensor is then inserted into this groove.
Lastly, the top with the acrylic tape is covered and encapsulated. The tensile force of each
encapsulated sensor is evaluated with a universal testing machine (UTM; 5569, Instron,
Norwood, MA, USA). At the same time as the tensile force experiment of the sensor, data
on variation of the electrical resistance according to the strain of the sensor are obtained
using a source meter (Keithley 2400, Tektronix, Beaverton, OR, USA).
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3.3. Experiments of Pulsatile Flow

Syringes were connected to the vessels through dispensing needles of the same sizes
as the vessel diameters. Because air bubbles in the syringe produce turbulent flow and
cause errors in the test results, the water in the syringes was prepared without bubbles.
Water maintains the temperature of the system because viscosity changes with temperature.
We regularly changed the pumping rates between 6.25 mL/min and 10.25 mL/min using a
programmable syringe pump (NE 4000, New Era Inc., Farmingdale, NY, USA) to create fluid
flow. An injected flow at a rate of 10.25 mL/min extends the diameter of the elastic vessel
according to the Poiseuille equation, and an injected flow at a rate of 6.25 mL/min causes the
diameter of the vessel to contract. As a result, the vessels experience dynamics analogous
to vasodilation and vasoconstriction. The pressure generated by periodic expansion and
contraction of the vessel is transferred to the epidermal layer, which causes deformation
of this layer periodically. According to Bernoulli’s law, the pressure that the vessel exerts
on the skin depends on the diameter of the vessel. To determine how the diameter of a
vessel affects the exerted pressure on the skin, we conducted experiments using different
vessel diameters. Each experiment was maintained at the same ambient temperature, water
temperature, and flow rate. To maintain the water temperature, we placed water on a
hot plate (HSD150-03P, 4science, Pangyo, Seongnam, KOREA) at a setting of 60 ◦C. The
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experiments were repeated for each diameter. The copper tape and electrical wires were
connected to the container wall of the phantom and source meter. The gel-type strain
sensor was placed on the epidermis and connected to the copper tape. The changing
pressure of the epidermal layer induced strain sensor deformations and caused changes
in its electrical resistance. The source meter acquired these electrical resistance variations
from the deformations of the strain sensor. LabVIEW (National Instruments, Austin, TX,
USA) software installed on a laptop was used to acquire and monitor the resistance change
data from the source meter. The acquired resistance data were then plotted as graphs using
the graphing program Origin (OriginLab Corporation, Northampton, MA, USA).

4. Results
4.1. Sensor Characteristics

The encapsulated sensor was first connected to the universal testing machine (UTM;
5569, Instron, Norwood, MA, USA). To monitor linear changes in electrical resistance due
to increase in the tensile strain, the UTM applied a tensile strain to the epidermal sensor at
a rate of 6 mm/min. Two wires from the sensor were connected to the source meter; the
electrical resistance was measured by continuously applying a bias voltage of 5 V to the
sensor. Figure 5a shows the increase in tensile strain over time and the resulting changes in
the electrical resistance. The graph shows that the electrical resistance increases linearly
with strain (R = 0.9969). The electrical resistance changed from 2.62 kΩ to 48 kΩ when the
tensile strain increased from 0% to 450%.
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The skin has a small elastic modulus of 140 kPa to 600 kPa when the epidermal
thickness is 0.05 mm to 1.5 mm and 2 kPa to 80 kPa when the dermal thickness is 0.3
to 3 mm [42]. The small modulus of the skin induces small deformations in the sensor
attached to the skin. Generally, sensors are highly sensitive to small deformations. A tensile
strain of 0.1% to 0.5% was applied to the sensor to observe its responses to small strains.
The resistance was measured by increasing the tensile strain by 0.1%. The strain was
increased and held for 10 s to confirm that the sensor maintained the resistance for a given
strain. As the tensile strain increased to 0.5%, the resistance of the epidermal sensor was
measured by reducing the strain by 0.1% (step-keep change test) [25]. Figure 5b is a graph
of the sensor resistance values for the strain changes and maintenance. The epidermal
strain sensor tends to show increased resistance at a constant rate when the same strain is
applied, but the electrical resistance tends to increase linearly when the strain is maintained.
When the electrical resistance is within the first 0.1% of strain and returned to 0.1% from
0.5% strain, there is an error of about 0.01%. The calculated gauge factor (∆R/R)/(∆l/l)
of the developed sensor is 38.93 at 0.5% tensile strain, which exhibits enough sensitivity
for monitoring pressure changes on the skin phantom. The gauge factor of our proposed
device is higher than the sensitivity of the reference article [43] using carbon nanotubes.

The immediate response of the sensor is one of the important parameters in the
operation of the strain sensor [44]. The vessels continuously experience changes in their
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volumes. These changing volumes induce deformation of the sensor. The immediate
changes in resistance resulting from deformation allow real-time monitoring of the vascular
information. Figure 5c shows the response times of the epidermal sensor graphically. When
0.1% strain is applied to the sensor, the response time is 96 ms.

4.2. Fluid Flow Monitoring

The vessel is placed at the Top, Middle, and Bottom positions for each vessel’s diameter
to monitor the sensor responses according to the diameter and position of the vessel. The
fluid flow produced by the syringe pump is transmitted to the vessels in the Bottom,
Middle, and Top positions of the flow phantom. Experiments were conducted with three
different vessel diameters, and pulsations were simulated by modifying the flow rate of
the syringe pump. When the flow was 6.25 mL/min, the resistance of the strain sensor
was R0. Here, ∆R represents the difference between the resistances of the sensor when the
fluid flows are 10.25 mL/min and 6.25 mL/min. The time between pulses is approximately
3.32 s. Because the length of the vessel and the viscosity of water are constant, changing
the fluid flow from 6.25 mL/min to 10.25 mL/min increases the diameter of the vessel
according to Equation (2). Equation (5) describes the increase in the diameter of the vessel
for a given streamline, indicating a decrease in fluid flow velocity and increase in pressure.
Because the thickness of the phantom pressing on the vessel depends on the position of the
vessel, the higher the height difference between the Bottom and Top positions, the smaller
is the value of Pphantom in Equation (1). The Pout is the same and Pphantom becomes smaller,
thereby increasing PTotal in Equation (1) for the same diameter of the vessel.

We generated four pulses by operating the syringe pump. For each pulse, the rela-
tive electrical resistance changes were measured as along with the means and standard
deviations to calculate the four measurements. Figure 6a shows the changes in electrical
resistance caused by pulsatile fluid flow according to the position of vessels for the 1.5 mm
diameter. Figure 6b shows the average of the relative rate of change in electrical resistance
depending on the position of the vessel.Sensors 2020, 20, x FOR PEER REVIEW 10 of 15 
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The 1.5 mm vessels show average relative electrical resistance changes of 0.03%,
0.07%, and 0.17% at the Bottom, Middle, and Top positions, with standard deviations of
0.0029%, 0.0052%, and 0.0051%, respectively. Compared to the Bottom position, the mean
of the relative change in electrical resistance differed by 2.37 and 5.29 times for the other
two positions.
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Figure 7a shows the changes in electrical resistance caused by pulsatile fluid flow
according to the position of the vessels of 2 mm diameter. The time between pulses is
approximately 3.32 s. When pressure is applied to the vessel with a constant thickness, the
increase in the diameter of the vessel indicates an increase in the pressure transmitted to
the skin, as explained by Equation (6). Figure 7b shows the average relative rate of change
in electrical resistance depending on the position of the vessel.
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The 2 mm vessels have average relative electrical resistance changes of 0.05%, 0.11%,
and 0.21% at the Bottom, Middle, and Top positions, with standard deviations of 0.0034%,
0.0069%, and 0.0086%, respectively. Compared to the Bottom position, the mean relative
change in electrical resistance differed by 2.16 times in the Middle and 4.09 times in the
Top positions. The relative changes in the electrical resistance are 1.66, 1.51, and 1.28 times
greater than those of the vessel with 1.5 mm diameter for the Bottom, Middle, and Top
positions, respectively.

Figure 8a shows the changes in electrical resistance caused by pulsatile fluid flow
according to the positions of vessels with 3 mm diameter. The time between pulses is
approximately 3.36 s. The 3 mm vessels have average relative electrical resistance changes
of 0.10%, 0.20%, and 0.34%, at the Bottom, Middle, and Top positions, with standard
deviations of 0.0089%, 0.0081%, and 0.0139%, respectively. Figure 8b is a graph showing
the average relative rate of change in electrical resistance depending on the position of
the vessel.

Compared to the Bottom position, the mean relative changes in electrical resistance
differed by 2.05 and 3.39 times for the other two positions. The relative changes in electrical
resistance were 3.17, 2.74, and 2.03 times greater than those of the 1.5 mm vessel for the
Bottom, Middle, and Top positions, respectively. Compared to vessels with 2 mm diameter,
the changes in the relative electrical resistances were 1.91, 1.81, and 1.58 times for the
Bottom, Middle, and Top positions, respectively.
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5. Discussion

The goal of our study was to formulate a new method for vessel monitoring and
to demonstrate the validity of the proposed method by experiments using simple flow
phantoms. We propose this noninvasive method instead of conventional vessel monitoring,
which requires expert analysis [3–11] or invasive methods [16–19]. The movement of the
vessels cause pressure variations that are transmitted to the skin to produce subtle changes.
We measured and analyzed these subtle changes to monitor the vessel movements. We
noted that the fabricated strain sensor could measure subtle deformations on the skin. The
strain sensor has the characteristic that its resistance changes when strain is applied simply.
We then analyze the sensor data mathematically to understand the mechanism of vascular
motion and to estimate the relative diameters and positions of the vessels.

According to the Navier–Stokes and Bernoulli equations, the amount of fluid in
a streamline remains the same and moves [33]. When the flow was maintained, we
demonstrate from Figure 6a, Figure 7a, and Figure 8a that the closer the vessel is to the
epidermal layer, the greater is the pressure produced. This result is the effect of skin
thickness that presses upon the vessels. Comparing the average value of each relative
resistance change in Figure 6b, Figure 7b, and Figure 8b, we see that the larger the diameter
of the vessel at a location, the greater is the pressure applied to the skin. As the position of
the vessel approaches the epidermis and the effect of thickness of the skin on the vessel
decreases, the growth rate of the diameter of the vessel and increase in pressure exerted
by the vessel toward the skin change similarly. For example, when the vessel of 1.5 mm
diameter was changed to 2 mm diameter, the diameter increased by 1.33 times, and for a
closer Top position, the relative resistance change to 1.33 was also closer. This means that
as the effect of the skin decreases, the pressure on the strain sensor becomes equivalent to
the pressure produced by the vessel itself, which can be explained by hoop stress [35].

This method has some limitations. First, there is an inherent limitation with respect to
the high sensitivity of the epidermal strain sensor. In other words, high resistivity changes
by external interference have not been solved when detecting microstrains. Second, there
are several clinical studies on wearable applications of strain sensors but not many of these
studies are targeted at hemodynamics. This causes difficulties in comparing experimental
and clinical data; further, mathematical hypotheses and validations are required. Third, the
effects of bone, sweat glands, viscosity of the actual blood, and vessel stiffness [45] on the
skin are not considered in this study because of complexities and difficulties in fabricating a
real skin–vessel phantom. In the future, our research will focus on these issues to improve
the reliability of the vessel monitoring method for clinical applications.
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6. Conclusions

The objective of this study was to formulate a noninvasive method of monitoring
vasodilation and vasoconstriction from skin deformations. A strain sensor was fabricated
and used to monitor and analyze the vessel dynamics in the skin indirectly. The validity of
the method was experimentally demonstrated using a simple flow phantom, which was
fabricated with three different vessel diameters (1.5 mm, 2 mm, and 3 mm) and divided
into Top, Middle, and Bottom vessel placements. We observed that pulsatile flows in the
vessels of 1.5 mm, 2 mm, and 3 mm diameters caused relative changes in the electrical
resistance ranging from 0.03% to 0.33%. The vessels close to the Top position had similar
growth rates for vessel diameter and relative resistance changes. When the diameter of
the 1.5 mm vessel was doubled, the change in electrical resistance at the Top position
was 2.03 times. The proposed method thus has the potential to be a new approach for
monitoring hemodynamics in the human body.
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