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Abstract: We report development of optical parametric oscillator (OPO)-based mid-infrared laser
system that utilizes a periodically poled nonlinear crystal pumped by a near-infrared (NIR)
laser. We obtained a mid-infrared average output of 8 W at an injection current of 20 A from a
quasi-phase-matched OPO using an external cavity configuration. Laser tissue ablation efficiency is
substantially affected by several parameters, including an optical fluence rate, wavelength of the laser
source, and the optical properties of target tissue. Dimensions of wavelength and radiant exposure
dependent tissue ablation are quantified using Fourier domain optical coherence tomography and
the ablation efficiency was compared to a non-converted NIR laser system.
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1. Introduction

Many researchers have focused on the development of mid-infrared laser systems with stable
average power over the last decade because of potential applications in spectroscopy, remote sensing,
and medicine [1,2]. Since various molecules exhibit strong characteristic absorption bands at the
infrared spectrum as well as the absence of mutagenic response in biological tissue, mid-infrared lasers
has been widely studied for laser tissue interaction and medical applications. The purpose of minimally
invasive laser tissue ablation is to remove target tissues in an efficient way while minimizing thermally
induced collateral damage [3]. In efforts to exploit optimized laser parameters and wavelengths, these
studies include several types of mid-infrared light sources such as free electron lasers (FELs), Carbon
monoxide (CO) lasers, quantum cascade lasers (QCLs), Raman-shifted lasers, and nonlinear optical
techniques [4–14].

In particular, 2 µm laser sources are promising candidates for laser tissue interaction because they
provide superior optical absorption properties in tissue. Water, which is the largest constituent of the
human body and biological tissue, is highly absorptive of 2 µm light. The favorable absorption in
water makes such lasers useful for medical applications including treatments of cartilage and urologic
diseases as well as laser tissue ablation. Successful laser tissue interaction studies were demonstrated in
the 2 µm spectral region using thulium or holmium-based laser systems [15–17]. An optical parametric
oscillator (OPO) is a coherent light source similar to a laser, but it is mainly based on the nonlinear
frequency conversion rather than the stimulated emission in a gain medium. The OPO is an attractive
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way of generating the 2 µm light where typical laser systems do not exist. Moreover, the OPO can
provide wideband tuning in various spectral regions for specific target chromophores.

In this study, we report development of optical parametric oscillator (OPO)-based 2 µm laser
system using a periodically poled nonlinear crystal pumped by a Q-switched diode-pumped Nd:YAG
laser with high average power operating with a 10 kHz repetition rate. We obtained 8 W of 2 µm
average output at the injection current of 20 A from a quasi-phase-matched OPO using an external
cavity configuration. In an attempt to investigate wavelength-dependent tissue ablation with an
OPO-based nonlinear-frequency conversion process, our study experimentally identified an adipose
tissue response to OPO-based two mid-infrared wavelengths, signal (1980 nm) and idler (2300 nm)
which coincide largest water and fat absorption in near 2 µm wavelength [18]. The laser tissue ablation
efficiency was also investigated. Ablation is substantially affected by several parameters including
an optical fluence rate, wavelength of the laser source, and the optical properties of target tissues.
Wavelength and radiant exposure dependent tissue ablation volumes were quantified and dimension of
laser tissue ablation was investigated using Fourier Domain Optical Coherence Tomography (FD-OCT).
We first demonstrated tissue ablation efficiency using conventional 1064 nm, 1980 nm, and newly
developed 2300 nm lasers by measuring geometric dimensions in depths and diameters of laser
ablation crater as well as by calculating the reduced mass after laser irradiation.

2. Materials and Methods

2.1. Mid-Infrared Generation Using Quasi-Phase Matched Nonlinear Frequency Conversion

For 2 µm generation, an acousto-optically Q-switched Nd:YAG laser was used for the pump for
OPO cavity. The laser operated at a wavelength of 1064 nm and was optically pumped by a CW diode
laser. The 1064 nm laser produced unpolarized light pulses with 40 W average power, 85 ns pulse
duration, and a repetition rate of 10 kHz. The schematic of laser configuration was shown in Figure 1.
A Faraday isolator was inserted between the 1064 nm pump and OPO cavity to prevent back reflection
of the injected pump from the double pass OPO. The 1064 nm pump beam was apertured with a
pinhole of 3 mm diameter and propagated over 1 m in order to obtain a spatially uniform beam profile.
The spatial profile of the 1064 nm pump beam was approximately Gaussian with a M2 parameter of
2.5 and the beam diameter was measured to be approximately 3 mm. The linearly polarized output of
the 1064 nm pump with 20.7 W average powers was achieved by incorporating a thin film polarizer
prior to the OPO cavity. The polarized 1064 nm pump beam was focused into the PPMgSLT crystal
(Oxide, Hokuto, Japan) to generate a spot size of 300 µm at the center of the nonlinear crystal using a
plano-convex lens with a 15 cm focal length.
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Figure 1. Experimental setup of OPO-based 2 micron generation for tissue ablation. DM: dichroic
mirror, Pump: DPSS Nd:YAG laser (1064 nm).

The average power of 1064 nm pump can be adjusted by rotating the half-wave plate without
changing spatial and temporal profile of the pump light. To convert the 1064 nm pump into 2 µm
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radiation, a 3 mm ˆ 3 mm ˆ 25 mm nonlinear crystal was introduced. The crystal has a grating period
of 32.7 µm in the PPMgSLT substrate. A first-order quasi-phase matching process enables an effective
frequency conversion from the 1064 nm pump into a 2 µm MID-IR wavelength region, resulting in the
generation of signal and idler with a center wavelength of 1980 and 2300 nm, respectively, shown in
Figure 2. The crystal temperature was controlled at 72 ˝C to satisfy a highly temperature dependent
phase matching condition. The OPO cavity consisted of two plano-mirrors, input coupler, and output
coupler with 45 mm separation. The nonlinear crystal was mounted at the center of the cavity.
The input coupling mirror allows over 98% transmission for the 1064 nm pump and high reflectance
(99%) for 2300 nm and 1980 nm. Figure 2 depicts the optical spectra of the signal and idler waves from
the OPO output measured by an InGaAs spectrometer (NIRQuest; Ocean Optics, Dunedin, FL, USA).
Since the output wavelength is dependent on the nonlinear crystal temperature, we controlled the
crystal temperature at 72 ˝C. The total average output was 8 W at an injection current of 20 A from a
quasi-phase-matched OPO using external cavity configuration. The stability of signal and idler output
power was also measured for 60 minutes at an internal of 60 s. The root-mean-square fluctuation in
the average power was 0.7% and 1.3% for signal (1980 nm) and idler (2300 nm), respectively.
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2.2. Tissue Sample

Porcine abdominal tissues were obtained from a local abattoir and utilized for tissue ablation
experiments. Samples used for ablation dimension measurement with OCT were flash frozen and then
fat tissue was dissected as a flat surface (5 cm ˆ 2 cm ˆ 1 cm). Samples were stored in a physiologic
saline solution prior to the experiment. Samples used for mass loss measurement were kept on ice
without freezing and then cut into squares with initial weight of approximately 2.5 g.

2.3. Tissue Ablation Measurements with OCT

Signal and idler with emission wavelength of 1980 and 2300 nm, respectively, from the doubly
resonant OPO system were used in the experiment. Laser irradiation of tissue was delivered by a
400 µm silica multimode fiber with predefined optical average power. Optical power at the end of
the cleaved fiber was measured by a model PM10 optical power meter (Thorlabs, Inc., Newton, NJ,
USA). Tissue samples (n > 10) were irradiated for measurements at each wavelength per parameter set.
To investigate morphological changes and quantitative dimensions in ablation crater, spectral domain
optical coherence tomography (SD-OCT) was used. OCT is a noninvasive optical imaging method
applied to a wide range of medical fields including ophthalmology, dermatology, cardiology, and
gastroenterology [19–22]. By integrating low-coherence interferometry and confocal laser scanning
technique, it can perform cross-sectional visualization of the internal structure of tissue with a
penetration depth of few mm and an axial resolution of ~15 µm [23–25]. OCT provides high
resolution images that correlate well with histology to identify morphologic changes within the
tissue. To investigate wavelength dependent ablation profile of the fat tissue, a custom-built SD-OCT
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system was used. As shown in Figure 3, the OCT system utilizes a superluminescent diode (SLD,
EXALOS AG, Schlieren, Switzerland, central wavelength = 855 nm, bandwidth = 55 nm, output
power = 5 mW) as a broad-band light source, a spectrometer unit comprising a diffraction grating
(1200 L/mm @ 840 nm; Wasatch Photonics, Inc. Durham, NC, USA), a focusing lens, and a line CCD
camera (E2V, AVIIVA, Chelmsford, UK). The sample arm of the fiber coupler was connected to a
sample probe unit consisting of a fiber collimator lens (Thorlabs, Inc.), two single-axis galvanometric
scanners, and single achromatic doublet as a scanning lens. The optical power on the tissue sample is
measured to be 1.3 mW. The reference arm of the fiber coupler is attached to an OCT reference arm unit
comprising a fiber collimator lens (Thorlabs, Inc.), an achromatic doublet lens, a neutral density filter
(Newport, Irvine, CA, USA), and a AR-coated mirror. The OCT system has theoretical axial resolution
of ~6 µm, lateral resolution of ~10 µm (FWHM), and sensitivity of ~100 dB.

Sensors 2016, 16, 598 4 of 9 

 

output power = 5 mW) as a broad-band light source, a spectrometer unit comprising a diffraction 
grating (1200 L/mm @ 840 nm; Wasatch Photonics, Inc. Durham, NC, USA), a focusing lens, and a 
line CCD camera (E2V, AVIIVA, Chelmsford, UK). The sample arm of the fiber coupler was 
connected to a sample probe unit consisting of a fiber collimator lens (Thorlabs, Inc.), two 
single-axis galvanometric scanners, and single achromatic doublet as a scanning lens. The optical 
power on the tissue sample is measured to be 1.3 mW. The reference arm of the fiber coupler is 
attached to an OCT reference arm unit comprising a fiber collimator lens (Thorlabs, Inc.), an 
achromatic doublet lens, a neutral density filter (Newport, Irvine, CA, USA), and a AR-coated 
mirror. The OCT system has theoretical axial resolution of ~6 µm, lateral resolution of ~10 µm 
(FWHM), and sensitivity of ~100 dB. 

 
Figure 3. A schematic of OCT system. SLD: superluminescent diode, PC: polarization controller,  
ND: neutral density filter. 

Our imaging system acquired single A-lines in 25 microseconds and complete cross-sectional 
images comprising 520 A-lines at a rate of 40 frames per second. In this system, the acquired OCT 
images from the tissue sample were 12 mm × 8 mm and the imaging range was 3.5 mm. The OCT  
B-scans of the ablated tissue with different radiant exposure times (7, 15, 30, and 60 s) were acquired 
and processed at the lateral position which has the maximum ablation depth [26]. 

2.4. In Vitro Tissue Mass Loss Measurements 

An in vitro experiment was conducted to quantify the wavelength dependent adipose tissue 
removal rate. Figure 4 shows the experimental setup for in vitro tissue ablation. Ablation 
wavelengths from pump (1064 nm) and OPO cavity (1980 and 2300 nm) were selected using a 
movable mirror (M1) and dichroic filters (DC). The focused laser was delivered to the tissue sample 
using a flat-cleaved 400 µm multimode fiber. 

 
Figure 4. Experimental setup for tissue ablation measurement. Adipose tissue samples were placed 
on the pan of analytical balance. The laser was guided using a flat-cleaved 400 µm multimode fiber. 
As the tissue changed its phase, liquified adipose tissue was immediately removed and the mass 
change was recorded. Inset shows typical tissue phase changes with different ablation time at  
1980 nm, 1 W. OPO: OPO cavity, M#: mirror, DC: dichroic filter. 

PC

PC

Fiber coupler

ND  filter Reference mirror

Galvano mirror

Tissue sample

SLD

Diffraction grating

Line scan camera

Focusing lens

Collimator

Collimator

Collimator

Scan lens

Lens

Frame grabber

Computer

Figure 3. A schematic of OCT system. SLD: superluminescent diode, PC: polarization controller, ND:
neutral density filter.

Our imaging system acquired single A-lines in 25 microseconds and complete cross-sectional
images comprising 520 A-lines at a rate of 40 frames per second. In this system, the acquired OCT
images from the tissue sample were 12 mm ˆ 8 mm and the imaging range was 3.5 mm. The OCT
B-scans of the ablated tissue with different radiant exposure times (7, 15, 30, and 60 s) were acquired
and processed at the lateral position which has the maximum ablation depth [26].

2.4. In Vitro Tissue Mass Loss Measurements

An in vitro experiment was conducted to quantify the wavelength dependent adipose tissue
removal rate. Figure 4 shows the experimental setup for in vitro tissue ablation. Ablation wavelengths
from pump (1064 nm) and OPO cavity (1980 and 2300 nm) were selected using a movable mirror (M1)
and dichroic filters (DC). The focused laser was delivered to the tissue sample using a flat-cleaved
400 µm multimode fiber.
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Figure 4. Experimental setup for tissue ablation measurement. Adipose tissue samples were placed
on the pan of analytical balance. The laser was guided using a flat-cleaved 400 µm multimode fiber.
As the tissue changed its phase, liquified adipose tissue was immediately removed and the mass
change was recorded. Inset shows typical tissue phase changes with different ablation time at 1980 nm,
1 W. OPO: OPO cavity, M#: mirror, DC: dichroic filter.
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Punch biopsy of adipose tissue with an initial mass of ~2.5 g was harvested from fresh porcine fat
tissue. Tissue was mounted and ablated on the pan of a micro-balance. Liquefied fat was removed
using absorption fabric after laser ablation. The tissue mass was recorded every 20 s after removing
phase changed tissue. To minimize the mass loss from water evaporation by the spontaneous air
circumstance, the experiment was conducted in a high humidity condition. Least squares regression
was used for data analysis and calculation of the tissue ablation rate after laser irradiation with pump,
signal, and idler wavelengths.

3. Results

Figure 5 shows representative OCT B-scans from the ablated fat tissue at a radiant exposure of
5 W (for pump) and 1 W (for idler and signal irradiation). The 2300 nm wavelength displayed the
largest ablation depth (capability) and created a narrow elongated crater for a deeper tissue area,
whereas 1980 nm irradiation wavelength created a relatively wide crater with a reduced ablation depth.
These two frequency-converted wavelengths show superior ablation capability when compared with
the non-converted pump wavelength of 1064 nm. In the latter case, 1 W exposure is far below the
ablation threshold; no evident tissue ablation is observed at 1 W irradiation. For quantitative analysis
of the OCT images, OCT B-scan is recorded at the deepest region of each ablation crater at same radiant
exposure for three different wavelengths of pump, signal, and idler. The maximum ablation regions
are decided by laterally scanning whole regions of ablation crater. The crater depth and width are
measured from 7 to 60 s with 5 W (1064 nm) and 1 W (1980 nm, 2300 nm) average output power.
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Figure 5. Representative OCT images of craters from laser irradiation at wavelength 1064 nm (a);
1980 nm (b); and 2300 nm (c) with 15 s ablation time. These particular images resulted from laser
irradiation using a 400 micron multimode silica fiber at 10 W for pump (total energy delivery of
119.4 kJ/cm2) and 1 W for signal and idler (total energy delivery of 11.9 kJ/cm2).

Figure 6 shows laser irradiation energy dependent crater depths and diameters at pump, signal,
and idler wavelengths. Crater depths at 2300 and 1980 nm rapidly increase in nearly non-linear fashion
as the incident time increased. However, the crater depth at 1064 nm increases slowly over the same
energy irradiation. The results from crater size measurement after laser irradiation at three different
wavelengths (pump, signal, and idler) with adipose tissue samples reveal significantly enhanced
lipolysis effects achieved by the nonlinear frequency conversion laser system with chromophore
targeting at the near 2 µm region.
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Figure 6. Ablation dimension measurement using OCT after laser irradiation at pump, signal, and
idler wavelengths. Crater depths (a) and diameters (b) in millimeters versus laser irradiation time.

Figure 7 depicts measured reduced mass of tissue samples with three different laser irradiation
wavelengths. For the quantitative evaluation of in vitro tissue mass losses after laser irradiation,
the measured mass losses for signal and idler at a radiant exposure of 79.5 kJ/cm2 show that the
highest mass removal for adipose tissue is achieved at idler (2300 nm) wavelength. From least square
regression, the calculated tissue ablation rates are 19.92 mg/min (1064 nm, 5 W), 48.84 mg/min
(1980 nm, 1 W), and 79.5 mg/min (2300 nm, 1 W).
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Figure 7. Amount of phase changed masses after laser irradiation at 79.5 kJ/cm2 for pump, signal, and
idler (1064, 1980, and 2300 nm).

4. Discussion

Comparison studies including pump, and frequency converted signal, and idler wavelengths
demonstrated significantly enhanced lipolysis effects with increasing wavelength specificity for the
adipose tissue in Figure 7. Phase changed mass loss after laser irradiation at 79.5 kJ/cm2 for three
different wavelengths was measured to be 6.64 ˘ 0.62 mg, 78.00 ˘ 4.93 mg, and 131.99 ˘ 9.78 mg, for
1064, 1980 and 2300 nm, respectively. In Figure 7, frequency converted wavelengths of signal and idler
require 22 and 38 times less energy, respectively, than the 1064 nm to lipolysis the same amount of
adipose tissue. The ablation rate of 2300 nm wavelength had 1.63 times greater ablation efficiency
(76 mg/min) than 1980 nm with same average power (1 W) shown in Figure 8.
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signal, and idler wavelengths. The points represent the experimental values and the solid lines are
linear regression fits (n > 10).

However, the 2300 nm laser induced tissue carbonization especially when the tissue was exposed
to long laser irradiation time. This is the reason that the laser system was operated as a quasi-CW
laser and attributed to high absorption for both water and fat. The role of temporal characteristics
(i.e., pulse duration) of laser system is important to achieve efficient tissue ablation and minimal
thermal damage. To minimize collateral damage, higher peak power is preferred because the thermal
energy is consumed for tissue phase transformation before it diffuses into surrounding tissues by a
single intense pulse. Although typical laser lipolysis is performed by inserting a cannula into the
subcutaneous fat layer under the skin as well as there is a low probability of thermal damage to the
unintended tissue layer, thermal effect control is an important issue for safer and minimally invasive
laser tissue ablation. Due to high optical absorption differences between water and fat, we expect the
1980 nm have the potential selective photothermolysis effect, especially for tissues with high water
content and low fat ratio.

We observed almost same ablation efficiency between 1 W/1980 nm and 10 W/1064 nm
(48.8 and 44 mg/min). It is notable that we used relatively small core (400 µm) bare-cleaved multimode
fibers for the experiments which have a small interaction area with tissue samples with minimized
power (1 W for signal and idler) [27]. However, the achieved ablation efficiency was remarkable and
effective adipose tissue phase change could be achieved with relatively small power and irradiation
time. Here, frequency converted wavelengths potentially facilitate time-effective surgical treatment
and cost-effective laser system scale downing with enhanced user safety. Moreover, the OPO-based
nonlinear frequency conversion process provided precise wavelength tuning by controlling quasi phase
matching condition in the nonlinear crystal (i.e., crystal temperature, crystal position) which enables
precise chromophore selecting and targeting in biological tissues. Future introduction of diffusing fiber
geometry (side emitting) will enable further increment of the tissue removal efficiency by dramatically
increasing laser-tissue interaction areas with the widespread and cost-effective 1064 nm pump laser
and the proposed OPO system. We expect this system has a potential to be commonly used in
user-friendly desktop environment for laser lipolysis treatment.

5. Conclusions

An optical parametric oscillator (OPO)-based 2 µm laser system was developed and its adipose
tissue ablation efficiency was investigated. The wavelength dependence measurements of laser
lipolysis effect were evaluated using different lasers with before and after the nonlinear frequency
conversion: 1064 nm vs. 2300 and 1980 nm wavelengths. The experimental results demonstrated
that the greatest ablation crater size and mass removal in adipose tissue was achieved at the 2300 nm
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wavelength followed, in order, by 1980 and 1064 nm. Quantitatively, frequency converted wavelengths
of signal and idler consume 22 and 38 times less energy than the non-converted pump wavelength,
1064 nm when removing the same amount of adipose tissues. Adipose ablation was highly wavelength
dependent. Additionally, the mid-infrared laser source 2300 nm enabled the largest craters and greatest
amount of mass removed at all radiant exposures. Therefore, 2300 nm and 1980 nm wavelengths
provided the higher ablation efficiency as compared with the pump 1064 nm laser.
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