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Abstract: Zebrafish (Danio rerio) eyes are widely used in modeling studies of human ophthalmic
diseases, including glaucoma and myopia. These pathologies cause morphological variations in the
anterior chamber elements, which can be quantitatively measured using morphometric parameters,
such as the corneal curvature, central corneal thickness, and anterior chamber angle. In the present
work, an automated method is presented for iris and corneal segmentation, as well as the determi-
nation of the above-mentioned morphometry from optical coherence tomography (OCT) scans of
zebrafish. The proposed method consists of four stages; namely, preprocessing, segmentation, post-
processing, and extraction of morphometric parameters. The first stage is composed of a combination
of wavelet and Fourier transforms as well as gamma correction for artifact removal/reduction. The
segmentation step is achieved using the U-net convolutional neural network. The postprocessing
stage is composed of multilevel thresholding and morphological operations. Finally, three algorithms
are proposed for automated morphological extraction in the last step. The morphology obtained
using our automated framework is compared against manual measurements to assess the effective-
ness of the method. The obtained results show that our scheme allows reliable determination of the
morphometric parameters, thereby allowing efficient assessment for massive studies on zebrafish
anterior chamber morphology using OCT scans.

Keywords: anterior chamber; optical coherence tomography (OCT); morphometry; segmentation;
zebrafish

1. Introduction

The anterior chamber refers to the front part of the eye between the cornea and iris
that contains the aqueous humor. The aqueous humor flows from the ciliary body into the
anterior chamber and is drained out through spongy tissue called the trabecular meshwork
into the Schlemm’s canal [1]. The aqueous humor provides nutrition to the eye and retains
the intraocular pressure (IOP). When drainage problems occur by a narrowed fluid exit,
fluid flow is disturbed as well as causing the IOP to be increased [1,2]. Increased IOP by a
narrowed Schlemm’s canal can also lead to pathogenesis of angle-closure glaucoma and
morphological changes in the tissues of the anterior chamber [3–5]. Hence, observation
of the anterior chamber morphology is one of the methods for diagnosing ophthalmic
diseases, including glaucoma [5–8].

The zebrafish is chosen as an animal model to observe the morphological changes in
the anterior chamber segment. Zebrafish (Danio rerio) has been used as a useful model
organism in medical and pharmaceutical research owing to its genetic similarity to humans,
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as well as relatively easier breeding and maintenance than other animal models [9,10].
Despite the advantages gained from the use of zebrafish, there are problems with extracting
reliable data from their eye morphology in large populations, owing to limitations with
reliable and fast image-analysis tools. For example, the corneal thickness of the zebrafish
reported by Zhao et al. was approximately 20 µm by the analysis of histologic sections
using light microscopy, whereas the results obtained by Heur et al. showed an approximate
thickness of 46.5 µm using spectral-domain OCT (SD-OCT) techniques [11,12]. These
suggest that the baseline research on the dimensions of ocular structures in the zebrafish eye
have to be repeated to validate existing results and produce normative datasets that would
allow reliable studies of eye diseases in the future. Such a study is also expected to provide
the criteria and references to identify zebrafish with abnormal eye growths and assess the
health statuses of zebrafish eyes. In comparisons between disease models and improved
age-matched controls, wild-type zebrafish enable enhanced reliability of experiments in the
disease models. Therefore, automatic image processing and morphometry extraction are
required to achieve reliable measurements and to create a database of the anterior chamber
morphologies of age-matched controls using massive populations of zebrafish.

For human eye scans analysis, different proposals for the automated anterior chamber
elements segmentation using deep learning algorithms have been previously published.
Measurements such as angle closure and scleral spur locations have been proposed by
Xu et al. [13]. Also, a more complete quantification of several elements was published by
Pham et al. [14]: a proposal whose main algorithm relies on the use of a hybrid proposal
between three different neural networks, providing accurate segmentation of elements
such as lens vault (LV), iris thickness (IT), trabecular iris space area, among many others.
However, regarding zebrafish scans, an automated segmentation or measurement method
of anterior chamber elements has not been reported. Taking into account the few mor-
phological differences between the human and zebrafish eye [15,16], a new method for
this proposal has to be developed. Many anterior chamber parameters can be acquired in
human eyes, for example, anterior chamber angle (ACA), anterior chamber depth (ACD),
anterior chamber width (ACW), angle opening distance (AOD), iris-ciliary process distance
(ICPD), iris–lens contact distance (ILCD), trabecular-iris angle (TIA), and trabecular-iris
space area (TISA). However, zebrafish eyes have some limitations in measuring all parame-
ters. First, zebrafish have a strongly reflective iris, which disturbs the measurements of the
trabecular-iris space area/angle recess area and angle opening distance. Second, unlike in
human eyes, the zebrafish lens is located very close to the cornea, so that measuring the
central anterior chamber area or depth is impossible.

In the present work, an automated method is presented for corneal and iris seg-
mentation and extraction of the anterior chamber morphometry from zebrafish images.
The anterior chamber images of zebrafish were obtained using a custom-built optical
coherence tomography (OCT) system for automated extraction of three morphometric
parameters; namely, corneal curvature (CC), central corneal thickness (CCT), and anterior
chamber angle (ACA): ocular parameters where anterior chamber elements are involved
and modified regarding the morphological changes described above. The CCT is an es-
sential parameter in assessing any potential glaucoma and eye diseases, since it plays an
important role in the IOP variations [4,17], where thinner CCT is related to several factors,
which are indicators of glaucoma progression and adjacent damage [18]. On the other hand,
the ACA is a closely related parameter identified as causative for human primary open
glaucoma [19], where the zebrafish has been employed as a model [20]. Last but not least,
the CC is one of the essential parameters when calculating the refractive power of the eye.
Also, it has a strong and inverse correlation when measuring the CCT [21].
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2. Methods

In this section, the optical system configuration, image acquisition protocols, and im-
age processing steps are described in detail. To obtain measurements of the morphometric
parameters noted previously, it is necessary to first segment the cornea and iris. The pro-
cessing of OCT scans can be divided into three stages; namely, preprocessing, segmentation,
and postprocessing. Once the key structures are segmented, the ocular morphology is
extracted using the distances between the ocular structures, as summarized in Figure 1.

Figure 1. (a) Raw OCT scan. (b) General scheme of scan processing and morphometric parameter
extraction. (c) Segmentation of cornea (white), iris (gray), the CCT (red lines), and the ACA (yellow
lines) measurement representation.

2.1. Imaging System Setup

Anterior chamber images of zebrafish eyes were acquired using a custom-built OCT
system with a fiber-coupled light source and 50:50 directional fiber coupler that splits
the light between the reference and sample arms. The reference arm constitutes a high-
reflectance mirror and iris (diaphragm) to control the power. The light source (bandwidth
∆λ: 100 nm, central wavelength λc: 840 nm) provides a theoretical axial resolution of
approximately 3 µm in air (M-D-840HP SUPERLUM, Carrigtwohill, Ireland). A two-
axis galvo-scanner set (8315K custom scanner set, Cambridge Technology, Bedford, MA,
USA) is used in the sample arm for raster scanning of the sample to generate volume
images. This OCT-detection system was calibrated using a spectroscopic fitting method
based on the absolute wavenumber calibration at a set of discrete pixel locations and
additional numerical dispersion compensation [22]. A vibration restraints optical table
system prevented the vibration of the control system and the affections by unspecific forces.
The illustration of this OCT system is shown in Figure 2.
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Figure 2. Schematic of the OCT system used to acquire 3D scans of the anterior chamber of the
zebrafish.

2.2. Zebrafish Image Acquisition Protocol

Ten in-water anesthetized wild-type zebrafish were used to obtain the volumetric
images of the anterior chamber. The zebrafish’s age was eight months, corresponding to
adults in the life cycle of the zebrafish. The anesthesia procedures are described in previous
research, as well as the zebrafish information network (ZFIN, an online biological database
of information about zebrafish) [23]. All imaging procedures were in compliance with the
experimental protocols approved by the Institutional Animal Care and Use Committee
of Inha University (approval number: 200901-717). After acquiring the volumetric data,
standard OCT processing was applied to create serial images and the axial pixel spacing
was calibrated by considering a refractive index of 1.34 for the zebrafish cornea [24].
The theoretical axial pixel size of the OCT system is 1.551 µm in the air (refractive index: 1).
The algorithm used for the axial pixel calibration is from the previous research reported
by Z. Turani et al. in 2018 [25]. In addition, the axially calibrated images were resized
to match a geometrical aspect ratio of 1:1 (457 × 1754 pixels corresponding to an area of
0.88 × 3.375 mm).

2.3. Image Preprocessing

Before applying segmentation, it is important to enhance the contrast of the OCT
images to avoid segmentation errors. Different preprocessing techniques have already
been used and reported for human and animal OCT scans depending on the artifact
types present in the images, such as A-line and saturation removal [26], wavelet-based
speckle denoising [27], and motion artifact reduction [28]. In the present study, two steps
were applied during preprocessing; the vertical and horizontal stripes in the images were
removed first, and the brightness of the composite elements were then adjusted by gamma
correction. A summary of the above-mentioned steps is shown in Figure 3.

2.3.1. Wavelet + Fourier Transforms for Stripe Removal

The zebrafish anterior chamber OCT scans often have vertical and horizontal stripe
artifacts owing to high tissue reflectivity; it is, therefore, important to preprocess the images
before segmentation to improve image quality.

As can be seen in Figure 3a, the zebrafish anterior chamber OCT B-scan shows vertical
and horizontal stripes; these artifacts are attributed to the local saturation of the OCT
detector. To reduce the artifacts caused by such saturation, stripe removal using a combined
wavelet and Fourier transform approach proposed by Münch et al. [29] is applied, which
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results in improved images compared to the purely fast Fourier transform (FFT)-based
stripe removal. In Figure 3b, the horizontal and vertical stripes removed from the original
OCT B-scan are shown. The usefulness of this method lies in the preservation of the
structural features by using the FFT on the Wavelet domain, providing a stricter separation
between original structures and artifacts.

(a) Raw OCT B-scan

(b) Stripes removed

(c) Enhanced OCT B-scan with stripes removed and gamma correction applied

Figure 3. Preprocessed OCT image scan and its manual segmentation.

In general, this algorithm works as follows: by applying a wavelet transform to the
image, a decomposition of three different wavelets is obtained, where each component
stores structural information about the horizontal, vertical, and diagonal details. Let us
consider the input image as a two-dimensional function I(x, y) of size M × N, and the
discrete wavelet transform (DWT) is defined in (1) and (2):

Wϕ(j0, m, n) =
1√
MN

M−1

∑
x=0

N−1

∑
y=0

I(x, y)ϕj0,m,n(x, y) (1)

Wi
ψ(j, m, n) =

1√
MN

M−1

∑
x=0

N−1

∑
y=0

I(x, y)ψi
j,m,n(x, y) i = {H, V, D} (2)

where the separable wavelets with directional sensitivity for the horizontal (H), vertical
(V), and diagonal (D) components are defined in (3), (4), and (5), respectively:

ψH(x, y) = ψ(x) ϕ(y) (3)

ψV(x, y) = ϕ(x) ψ(y) (4)

ψD(x, y) = ψ(x) ψ(y) (5)
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The scaled and translated basis functions for the DWT are expressed as in (6) and (7):

ϕj,m,n(x, y) = 2j/2 ϕ(2jx−m, 2jy− n) (6)

ψi
j,m,n(x, y) = 2j/2ψi(2jx−m, 2jy− n), i = {H, V, D} (7)

For more detailed mathematical analyses, please refer to [30]. Once the wavelet components
ψH(x, y) and ψV(x, y) are obtained, the DFT is applied to transform the image to the fre-
quency domain, where the stripe artifacts are contained in the high-frequency components.
This process is applied eight times, i.e., up to decomposition level L = 8, to ensure the
removal of the stripe residuals. The DWT is performed using the Daubechies 22 wavelet
set. Considering the horizontal and vertical wavelet components ψH(x, y) and ψV(x, y),
respectively, which are composed of eight different decompositions of different A× B sizes,
the DFT is defined in (8):

Fi
ψ(u, v) =

1
AB

A−1

∑
x=0

B−1

∑
y=0

ψi(x, y) exp
[
− j2π

(ux
A

+
vy
B

)]
, i = {H, V} (8)

Here, a bandpass filter is applied to the Fourier coefficients using a Gaussian filter for both
the vertical and horizontal coefficients, as defined in (9):

H(u, v) = Fi
ψ(u, v)

(
1− exp

(
−D2(u, v)

2σ2

))
(9)

where σ represents the standard deviation of the Gaussian function, which is set as 1.
Once the stripes are removed, it is necessary to transform the image back to the spatial

domain to produce the image I′(x, y). This is achieved with the inverse discrete Fourier
transform (IDFT) as well as the inverse DWT (IDWT), which are mathematically expressed
by (10) and (11), respectively:

f i
ψ(x, y) =

A−1

∑
u=0

B−1

∑
v=0

H(u, v) exp
[

j2π
(ux

A
+

vy
B

)]
, i = {H, V} (10)

I′(x, y) =
1√
MN

∑
m

∑
n

Wϕ(j0, m, n)ϕj0,m,n(x, y)

+
1√
MN

∑
i=H,V,D

∞

∑
j=j0

∑
m

∑
n

Wi
ψ(j, m, n) f i

ψj,m,n(x, y), i = {H, V, D}
(11)

Since the DFT uses a frequency-domain-filtering process, the scan loses luminance and
shows grayish regions. To homogenize and recover the contrast of the image elements,
gamma correction is applied, as detailed below.

2.3.2. Gamma Correction

The fundamental principle of gamma correction is in the well-known power-law
transformation [30] expressed in (12):

G = aPγ (12)

where a and γ are positive real-valued constants, P is the pixel value (P ∈ [0, 255] for an
8-bit grayscale image), and G is the corrected pixel value. Conventionally, the exponent
of this transformation is usually the letter gamma, which represents the algorithm name.
When calculating the pixel intensity compensation, the input pixel value is raised to the
power of the inverse of gamma (γ), whose value is known [31]. Considering this, (12) is
applied to the grayscale values, and by considering a = 1, the inverted gamma correction
is mathematically expressed as in (13):
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G = 255
( P

255

) 1
γ

(13)

Figure 4 shows a plot of G versus P for different γ values. The variable L represents
the maximum input pixel value. It is observed that opposite responses are obtained for
γ > 1 and γ < 1. As the γ values move farther away from 1, more drastic responses
are observed. As the γ value approaches zero (known as encoding gamma), the pixel
values are brighter; otherwise, as the γ value passes unity (known as decoding gamma),
the pixels become less bright. In this work, γ = 1.1 is used to recover the contrast of the
B-scan images. As shown above, in Figure 3c, the stripes are removed, and the contrast is
recovered. Once the preprocessing is completed, segmentation is applied as detailed next.

Figure 4. Plots of gamma correction for different γ values.

2.4. Segmentation Process

Before performing segmentation and due to the fact that a training dataset is required
for convolutional neural network (CNN)-based segmentation, manual segmentation was
conducted. Both the manual and CNN-based segmentation steps are detailed below.

2.4.1. Manual Multilabel Segmentation and Data Labeling

To train the network, ground truth images (training dataset) are necessary. Manually
segmented images were obtained using the ImageJ software developed by the National
Institutes of Health (NIH). From the preprocessed scans obtained from the ten different
zebrafish, 65 central scans were randomly selected. In each scan, both the iris and cornea
were manually segmented, as shown in Figure 5. The segmentation of the cornea is limited
to its junction with the iris, as further consideration is unnecessary for the purposes of
this method. The delineation of central corneal thickness followed the criteria proposed
by Heur et al. [12]. Corneal-edge pixels are quite defined in pre-processed scans. On the
other hand, even having the presence of glare pixels around the iris, manual segmentation
is straightforward since pixels corresponding to the iris are well-saturated.



Photonics 2023, 10, 957 8 of 15

(a) Preprocessed anterior chamber scan

(b) Cornea (white) and iris (gray) manual segmentation

Figure 5. Manual segmentation of the preprocessed scan.

2.4.2. CNN-Based Cornea and Iris Segmentation

CNNs have been widely used for medical image segmentation, given their success and
efficiency, including proposals for ophthalmic scans, such as retinal vessel segmentation
and retinal layer segmentations [32,33]. For the segmentation of images of the anterior
eye structures, several architectures have been used, such as faster region-based CNN
(FR-CNN) [34], PIPE-Net [35], and Lenet-5 [36]. Different networks have been developed
for training using smaller numbers of images with improved levels of success. One of
the most used architectures, because of its efficiency with a fewer number of training
images, is the so-called U-net, which has been widely used for the task of medical image
segmentation [37]. It was introduced by Ronneberger et al. [38] and was initially designed
for electron microscopy images, but has also been used on images acquired from different
modalities [39,40]. The U-net has been proven to provide good results for segmenting eye-
related images [41,42], and considering the low computational cost and great performance
with limited training data, this architecture is selected for the segmentation stage. This
architecture is composed of encoder and decoder paths. The first one captures the context
and extracts high-level features from the input image by using convolutional layers with
max-pooling operations. On the other hand, the second generates the segmentation mask
by upsampling and combining the features from the encoder. In addition, to preserve the
fine-grained details, skip connections are added to enable the flow of information from
lower-resolution feature maps to higher-resolution ones, facilitating the precise localization
of objects in the segmentation mask. By applying a 1× 1 convolution followed by a softmax
activation function, the final layer generates a pixel-wise probability map that represents
the predicted segmentation mask.

Geometric data augmentation was performed over the 65 scans to obtain a larger
training dataset, in which image inversion techniques, as well as horizontal and vertical
displacements, were used. Thus, a total of 260 images were used to train the network.
For the work presented herein, the scans were resized to 128 × 128 pixels resolution,
since there was not any performance impact on using a higher resolution, but it kept the
computational cost lower. The whole dataset was shuffled and divided into training and
test sets in a ratio of 80:20 and a stratified 5-fold cross-validation technique [43] is used,
considering the limited sample. This technique yielded softmax outputs using a binary
cross-entropy loss function. After a fine-tuning process, the Adam optimizer [44] was
implemented with a learning rate of 1× 10−4; the training process was completed for 20
epochs with 1000 steps per epoch.
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2.5. Postprocessing

For the probability map obtained through the U-net, each pixel has a value weight
depending on its degree of coincidence with the ground truth, as shown in Figure 6a.
The postprocessing step is then applied to the map to obtain a final segmentation prior to
the measurement of the parameters. First, thresholding is applied based on the range of
values in the map. In this work, it is necessary to segment three eye structures (background,
iris, and cornea) so that two normalized threshold values are proposed; namely, th1 and
th2, with values of 0.25 and 0.65, respectively. Let us consider p(x, y) as the probability
map. The function s(x, y) that assigns the probability values to allow image segmentation
is defined in (14):

s(x, y) =


0 if p(x, y) < th1

128 if th1 < p(x, y) < th2

255 if p(x, y) > th2

(14)

where the values for the background, iris, and cornea are 0, 128, and 255, respectively.
Once the threshold values are set, the morphological operations are performed to

better profile each element: a technique that has been widely used as postprocessing
in different approaches. A combination of dilation and erosion operations is applied to
compensate for the pixels representing the junction between the iris and cornea, which is
often misinterpreted. Derived from the thresholding process, the morphological operations
can be applied to each of the segmented structures separately, since their pixel values are
different. For example, as shown in Figure 6, the obtained probability map considers the
outer part of the cornea as the iris. This is easily compensated by applying the dilation
operation followed by the erosion operation to the pixels corresponding to the cornea, so
that the pixels detected as iris are completed. The final segmentation results are shown in
Figure 6b.

(a) Pseudocolored probability map obtained from the U-net

(b) Final segmentation result

Figure 6. Probability map and postprocessing result.

2.6. Automated Measurements

Once the iris and corneal zones are segmented, custom pixelwise algorithms are
implemented to measure the ACA, CCT, and CC. The measurement algorithm for each
parameter is described below.

2.6.1. Anterior Chamber Angle (ACA)

Considering that standardized measurement techniques of the ACA or iridocorneal
angle in zebrafish scans are not well-defined [20,45], an analysis similar to that performed
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with images of the human eye anterior segments is proposed. In the human eyes, the angle
opening distance (AOD) at 500 µm (AOD500) is one of the standard extracted param-
eters for ACA measurement [46], since it is used as the distance where the angle must
be measured. This parameter was first used on ultrasound biomicroscopic images and
was proposed by Pavlin et al. [47] in 1992. To obtain the proportional distance of the
AOD500 to measure the ACA in zebrafish, the anterior chamber width (ACW) [48] was
considered for a scaled proportional analysis. A study presented by Goldsmith et al. [49]
on 20 human patients’ scans reported an ACW average of 12.53± 0.47 mm (inter eye SD).
The ACW was manually measured from the selected scans, and the obtained mean value
was 1.38± 0.10 mm (detailed values are presented in Section 3). Considering the above and
applying a proportional analysis, the distance used for the AOD500 equivalent measure-
ments in zebrafish was 55.06 µm. This distance is used to perform the ACA measurement,
which starts from the iridocorneal junction. To obtain the angle formed by the cornea
and iris, segmentations of both components are used. First, both the segmentations are
merged to form the iridocorneal angle. Thereafter, only the edges of both segmentations
are extracted, and the lower part of the iris and upper part of the cornea are removed.
This operation results in lines that are connected through the lower corneal segmentation
boundary. A column-wise operation is implemented thereafter; if there are two pixels
in a column, then it is considered as the angle-forming column; otherwise, these pixels
are removed.

Once the pixels for this distance are obtained, and assuming that there is no constant
slope for the lines formed by the iris and corneal boundaries, linear regression [50] is
applied to the set of points composing each line to form a constant angle. These steps are
shown in Figure 7.

(a) Iridocorneal angle formed by the iris–cornea junction

(b) Linear regression applied to each angle line

Figure 7. Raw ACA pixels and interpolated data.

Once the slope of each line is defined, it is cropped to use the proposed distance for
zebrafish angle measurements by considering the pixel size. Let a and b denote the vectors
of each line forming the angle. The angle θ formed between them is defined in (15):
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θ = cos−1
( a · b
|a||b|

)
(15)

2.6.2. Central Corneal Thickness (CCT)

For the CCT measurements, the considerations are simpler. After corneal segmentation,
a simple column-wise analysis is applied, where the upper central columns are considered,
and the average number of segmented pixels in each column is obtained. This value is then
multiplied by the scaling factor of the axial pixels in mm/pixel, and the process is applied
to the segmented scan with the original scan resolution (not the resized one) to maintain
pixel dimensions.

2.6.3. Corneal Curvature (CC)

The CC measurements are also obtained from corneal segmentation; the upper and
lower corneal boundaries are extracted, and the mean distance between them is calculated.
Once this is completed, a curvature represented by each column value is obtained; a
graphical example of this calculation is shown in Figure 8.

Figure 8. Green-colored central curvature of corneal segmentation.

To extract the CC, a second-order polynomial regression is applied to fit the curve to
the cornea using a function defined in (16):

c(x) = ax2 + bx + c (16)

Note that the images in Figures 7 and 8 are magnified to better visualize the analysis
steps.

3. Results

This section summarizes the results obtained using the methodology proposed in
Section 2. A central scan of each of the ten sets of data was used, avoiding any images used
to train the neural network. These ten scans were selected using the same criteria as the
training ones, while keeping them apart from the learning process. The zebrafish were
randomly selected and, despite having the same age, they present some morphological
differences. Taking into account that the focus of this proposal is to present a tool for
massive data collection, these variations do not represent an inconvenience. The prepro-
cessing, postprocessing, and parameter measurement steps were implemented in MATLAB
R2019a software, while the CNN segmentation was implemented using Python in the
PyCharm IDE. Table 1 shows the results for manual measurements for the ACW used as
a reference for the ACA considerations described in the previous section, while the CC
values correspond to the automated measurements. The CCT values for both manual and
automated measurements are included as well.
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Table 1. Numerical results of manual and automated measurements of ACW, CCT, and CC.

Zebrafish

Number Set

Manual

ACW (mm)

Manual

CCT (µm)

Automated

CCT (µm)

Automated

CC (Coefficient)

1 1.25 34.51 39.27 −0.0009

2 1.28 35.70 41.65 −0.0009

3 1.46 36.89 42.84 −0.0007

4 1.46 32.12 39.27 −0.0007

5 1.29 36.89 42.84 −0.0008

6 1.41 29.75 30.94 −0.0007

7 1.34 27.37 32.13 −0.0007

8 1.46 28.56 33.32 −0.0008

9 1.35 28.56 34.51 −0.0008

10 1.58 27.37 36.89 −0.0006

Mean ± SD 1.38 ± 0.10 31.77 ± 3.92 37.36 ± 4.45 −0.00076 ± 0.000096

As noted above, the ACW values are included to show the manual measurements
and their variability for zebrafish scans. The CC values shown in Table 1 represent the
coefficient as defined in (16). Figure 9 shows the plots of the coefficients of (16), with b = 0
and c = 1 as offset values. These curvature variations represent different refractive powers
of the zebrafish cornea. The mean ± standard deviation value of the CC measurements is
−0.00076± 0.000095.

Figure 9. Corneal curvature plot of coefficient.

For the CCT, the mean manual and automated values are 31.77 µm and 37.36 µm,
respectively. As seen above, the automated segmentation presents a higher pixel number
for the cornea, which is attributed to the uncertainty of the probability map and postpro-
cessing steps.

Table 2 shows the ACA measurements using both manual and automated segmen-
tation. These measurements were performed for the right and left side angles for a more
comprehensive analysis. By analyzing the mean values presented in Table 2, it is observed
that the automated method provides a lower ACA value on average. For the left side of
the scan, the mean ± standard deviation values are 18.45° ± 3.87° and 18.14° ± 3.50° for
the manual and automated measurements, respectively. In the case of the right-side angle,
values of 22.80° ± 1.25° and 20.86° ± 1.27° were obtained for the manual and automated
measurements, respectively.



Photonics 2023, 10, 957 13 of 15

Table 2. Numerical results of manual and automated ACA measurements.

Zebrafish Manual ACA (◦) Automated ACA (◦)

Number Set Left Side Right Side Left Side Right Side

1 22.95 24.33 22.45 23.01

2 23.04 24.38 21.77 22.62

3 14.27 21.96 13.20 20.56

4 13.57 22.44 12.60 19.47

5 23.25 22.51 21.13 21.02

6 14.26 21.86 16.98 20.16

7 18.67 22.58 20.10 21.20

8 15.85 20.83 18.37 19.02

9 17.93 24.68 15.34 21.45

10 20.71 22.46 19.45 20.12

Mean ± SD 18.45 ± 3.87 22.80 ± 1.25 18.14 ± 3.50 20.86 ± 1.27

4. Conclusions and Further Work

These animal models have long been applied to study human diseases successfully.
For example, there are many similarities between the basic structures and functions of
the zebrafish and human eyes. These similarities highlight the need and relevance of the
current study. Previously, the reported CCT values were obtained using different methods
(with images acquired via electron microscopy or SD-OCT), where each method had a
different source of errors and error tolerance as a function of the image resolution, thereby
carrying an implicit error range. For more reliable automated segmentation data, larger
data acquisition and processing should be applied to allow better training and, thus, the
generation of more reliable results. Automated extraction of the parameters, such as the CC
and ACA, have not been reported previously for the OCT scans from the anterior chamber
of the fish eye, using manual or automated segmentation. Therefore, the work presented
here represents a breakthrough in this field.
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