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Abstract: The use of flexible pressure sensors has become increasingly widespread in a variety
of applications, including wearable electronics and electronic skin. These sensors need to exhibit
high sensitivity, wide detection limits, a fast response time, a linear response, and mechanical
stability. In this study, we demonstrate a resistive pressure sensor based on randomly arranged
micropyramid polydimethylsiloxane (PDMS) with a conductive poly(3,4-ethylenedioxythiophene):
polystyrenesulfonate (PEDOT:PSS) thin film with a sensitivity of 391 kPa−1, a response time of
52.91 ms, a recovery time of 4.38 ms, and a limit of detection (LOD) of 0.35 kPa. Electrodes are then
connected to a pair of the proposed resistive pressure sensors that face each other to fabricate a
pressure sensing device. We examine various characteristics of the fabricated device, including the
changes observed when applying loads ranging from 0 to 2.58 kPa. The proposed sensor exhibits
high sensitivity and a rapid response time.

Keywords: piezoresistive sensor; resistive pressure sensor; PDMS/PEDOT:PSS; micropyramid structure

1. Introduction

Flexible pressure sensors are becoming increasingly common in wearable electronics [1,2],
electronic skin [3,4], electronic devices [5], and robotics [6,7]. Pressure sensors measure pres-
sure signals, which are defined as the ratio of a force to the area on which the force acts [8],
and can be classified as piezoresistive [9,10], capacitive [11,12], or piezoelectric [13,14] de-
pending on their sensing mechanism. Piezoresistive pressure sensors have received par-
ticular attention for a number of key advantages, such as their more straightforward
manufacturing process, relatively high sensitivity, wide sensing range, and excellent anti-
interference properties [15]. They can also be manufactured with a small size and consist
of elastic conductive materials, allowing for a more flexible device structure and a wider
deformation range [16].

Nevertheless, piezoresistive pressure sensors are expensive, cannot be mass-produced,
and often exhibit poor stability [17,18]. In addition, there has been a drive to further increase
the sensitivity of flexible pressure sensors so that they can be incorporated into sensing
devices for the detection of other external signals, such as temperature and humidity [19,20].
To improve the sensitivity, it is important to tune the microstructure of the dielectric layer,
which increases the manufacturing complexity of the sensor. As such, there remain a
number of challenges to overcome to simplify this technology and increase its sensitivity.

The operational basis of piezoresistive pressure sensors is their ability to detect changes
in resistance in response to external pressure stimuli, known as the piezoresistive effect. In
this process, resistance R is expressed as
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R = ρ
l
s

(1)

where ρ is the specific resistance of the material, l is its total length, and s is the cross-
sectional area. The resistance of the material thus changes with l and s as it deforms.

Piezoresistive pressure sensors are typically fabricated with active materials posi-
tioned between two electrodes that are vertically aligned [21,22]. For decades, tremendous
efforts have been made to improve sensor performance with bi- and trilayer microstruc-
tures [23,24], deformable electrodes [25,26], and novel durable materials [27]. The bi-
and trilayer microstructures, consisting of flexible microstructured substrates as well as
conductive electrodes, have been designed to enhance both stretchability and sensitivity.
The deformable electrodes are typically made from conductive elastic composites with
resistance changes in geometric dimensions or alterations in the local electrical percolation
pathways. Novel durable materials based on textiles, cellulose, and biocarbon materials
have been developed in applications of biocompatible and biodegradable pressure sen-
sors [28]. Despite significant advancements in developing novel pressor sensors using
artificial structures and conductive materials, the traditional approach has yet to fully
overcome the trade-off between sensitivity and linearity in pressure sensors [29].

Electrode materials of flexible and stretchable electronics need to obtain high mechani-
cal flexibility and optical transparency while maintaining electrical conductivity [30,31]. In
response to these demands, researchers have concentrated on creating flexible functional
materials to replace conventional rigid materials in electronic devices. Therefore, flexible
electronic materials including metal wires or films, carbon nanomaterials, and conducting
polymers have been investigated [32,33]. Among them, conductive polymers have recently
received significant attention owing to their electrochemical and thermal stability, excellent
electrical conductivity, and high transparency [34]. PEDOT:PSS is the most widely studied
conducting polymer due to its high transparency in the visible spectrum, ease of solution
processing, high work function, and significant mechanical stability [35]. However, since
the pristine PEDOT film has a low conductivity of less than 1 S/cm, polar solvents of
DMSO (dimethyl sulfoxide) and EG (ethylene glycol) are commonly used to enhance its
electrical conductivity [36].

PDMS-based films with various surface and hierarchical microstructures have been
developed for the use of pressure sensors [37]. The geometry and parameters of the mi-
crostructure have a significant influence on the contact area and local stress when pressure
is applied. PDMS films with various microstructures including micropillar, micropyramid,
and microdome arrays have been used to fabricate highly sensitive pressure sensors [38].
In general, pressure sensors with nano/microstructure patterns provide high sensitivity
by significantly increasing the contact area under low-pressure conditions. However, as
deformation progresses, the sensitivity of the pressure sensor greatly declines. Maintaining
high sensitivity over a broad linear range is ideal for the best sensor performance [39,40].
An alternative approach to piezoresistive sensors is to produce PDMS microstructures with
random pyramid architectures to enhance sensitivity by adjusting the height and spacing
of the micropyramids [41]. Pressure sensors with irregular microstructures exhibit high
sensitivity while maintaining broad linear sensing ranges [42,43]. When a small pressure is
applied to the sensor, the contact area rapidly increases with the applied pressure due to
the concentrated deformation of large microstructures, resulting in high sensitivity of the
pressure sensor. As pressure increases, tiny microstructures contribute to electrical contacts,
enabling pressure sensing over a wider linear range.

In the present study, we developed a low-cost pressure sensor with improved sensitiv-
ity and a fast response time by adding a PEDOT:PSS thin film to the surface of PDMS that
had already been patterned with micropyramids of various heights. Cu-assisted chemical
etching (CACE) was employed during the sensor fabrication process [44,45]. Etching times
of 3, 5, and 10 min were also used with a silicon mold to produce micro-inverted pyramids
with random heights. Previous microstructure-based pressure sensors were primarily
manufactured using photolithography, 3D printing, and laser-assisted microengineering
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techniques [46,47]. However, these methods are often costly and time consuming. In
contrast, the CACE process can create highly accurate inverted pyramid shapes on silicon
surfaces. As the etching proceeds, the CACE selectively removes specific crystal planes,
allowing for precise control over the three dimensions of the structure. This method enables
the formation of either randomly arranged micropyramids or uniformly patterned struc-
tures with varying depths. Additionally, the CACE method uses inexpensive chemicals
and does not require complex machinery to produce high-quality nanostructures [44,45].
The properties of the PEDOT:PSS composite were confirmed using Raman spectroscopy.
Several peaks representing the specific vibrational modes of PEDOT and PSS were identi-
fied in the composite. A resistive pressure sensor based on the PDMS/PEDOT:PSS bilayer
structure with micropyramids of random heights was developed using the CACE process
and demonstrated improved sensitivity, a rapid response time, and high repeatability.

2. Experimental Section
2.1. Materials and Reagents

PDMS (Sylgard 184, silicon elastomer) and a corresponding curing agent were pur-
chased from Dow Corning Co., Ltd (Midland, MI, USA). Cu(NO3)2, hydrogen peroxide
(H2O2, 30%, GR), sulfuric acid (H2SO4), hydrogen fluoride (HF), toluene, and triclo(1H,1H,
2H,2H-perflurooctyl)silane were purchased from Sigma Aldrich (Burlington, MA, USA).
Si(100) wafers were purchased from Buysemi, Korea. All materials were used directly
without further purification unless otherwise noted.

2.2. Silicon Mold Fabrication

The silicon mold was created using CACE. First, the boron-doped (1–10 Ω·cm), 500 µm
thick, (100)-oriented, double-polished silicon wafers were thoroughly rinsed in acetone and
deionized (DI) water for about 10 min to remove any organic contaminants. Wet etching of
the silicon was then conducted using a Cu-based acid solution containing 5 mM Cu(NO3)2,
4.6 M HF, and 0.55 M H2O2 at 50 ◦C. The etching times were 3, 5, and 10 min. The residual
Cu nanoparticles were subsequently removed using a concentrated nitric acid (HNO3)
solution in a sonication bath.

2.3. PEDOT:PSS Composite

To prepare the PEDOT:PSS composite, a pristine PEDOT:PSS solution was stirred at
200 rpm and 40 ◦C to obtain the desired volume at a 2× concentration. Based on the weight
of PEDOT:PSS, 10 wt.% of ethylene glycol (EG) and 1.5 wt.% of TX (Triton)-100 were added,
and the solution was vortexed for 10 min at room temperature.

2.4. Pressure Sensor Fabrication

A piranha solution was prepared by slowly adding H2O2 to concentrated H2SO4 at a
3:1 ratio to control the exothermic reaction. The surface of the silicon mold was then soaked
in the piranha solution for 30 min and rinsed with DI water. To facilitate the removal
of the cured PDMS from the silicon mold without damaging the pattern, the surface of
the silicon mold was coated with a self-assembling monolayer of trichloro(1H,1H,2H,2H-
perfluorooctyl)silane (FOTS). The mold was placed in a sonication bath for 10 min and in a
vacuum chamber for 60 min at room temperature. It was then annealed at 150 ◦C for 60 min.
This process transformed the previously hydrophilic surface into a hydrophobic one.

The curing agent was mixed at a 10:1 ratio with the PDMS elastomer, and the mixture
was cast onto the silicon mold. Oxygen (O2) and nitrogen (N2) contained in the mixture
and residual air bubbles generated during mixing were extracted in a vacuum chamber
to improve the quality of the mold by removing air bubbles inside the PDMS mixture.
The PDMS was then cured at 70 ◦C for 4 h and peeled off the silicon mold. The pressure
sensor was fabricated by casting the PEDOT:PSS composite onto the PDMS mold using
spin coating (500 rpm for 20 s or 200 rpm for 60 s). The sensor was then annealed at 140 ◦C
for 60 min.
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2.5. Characterization and Measurements

The surface morphology of the silicon and PDMS molds was analyzed using a scanning
electron microscope (SEM, Olympus OLS4500, Tokyo, Japan). Changes in the electrical
resistance of the sensor due to changes in pressure were obtained using a source meter
(Keithley 2400, Tektronix, Beaverton, OR, USA).

3. Results and Discussion
3.1. Preparation and Characterization

Figure 1 summarizes the operating principles of the proposed resistive pressure sensor
based on a PEDOT:PSS thin film coating on microstructured PDMS with micropyramids of
random heights. The sensing mechanism is a change in resistance when a constant pressure
is applied to the upper surface of the sensor. As shown in Figure 1a, when a certain pressure
is applied to the upper surface of the sensor, the change in resistance is measured. Figure 1b
shows a side view of a pair of resistive pressure sensors based on the PDMS/PEDOT:PSS
facing each other with electrodes connected to the top and bottom sensors. The total
resistance of the sensor is determined by the resistance of the PDMS/PEDOT:PSS layer
and the electrode. However, because the resistance of the electrode is fixed, the sensor’s
resistance signal is mainly determined by the PDMS/PEDOT:PSS layer, as illustrated in
Equation (1).
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Figure 1. Operating principles for the proposed resistive pressure sensor based on a PEDOT:PSS
thin film coating on microstructured PDMS with micropyramids of random height. (a) Mechanisms
associated with the change in resistance when constant pressure is applied to the upper surface of the
sensor. (b) Side view of a resistive pressure sensor based on a PEDOT:PSS thin film on PDMS with a
micropyramid structure. (c) Morphological change in the sensor with a change in the sensor pressure.

Figure 1c shows the morphological changes in the sensor with a change in pressure
from an initial pressure P0 to P1 and P2. The sensitivity of the sensor is defined as

S =
∆R/R0

∆P
(2)

where R is the sensor’s output resistance, ∆P is the change in pressure, and R0 is the
sensor’s initial resistance. The change in resistance due to the change in pressure is
expressed as ∆R/R0.

Figure 2 presents the fabrication process for the silicon and PDMS molds. Figure 2a
shows the CACE process used to obtain an inverted pyramid structure via time-dependent
etching. This selective etching is a proper method for creating pyramidal structures of ran-
dom heights and has the advantage of processing large areas [44,45]. Copper nanoparticles
(CuNPs) act as a catalyst to promote redox reactions on the silicon surface, and etching
proceeds as HF removes the oxide film. First, copper ions (Cu2+) and hydrogen perox-
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ide (H2O2) react on the silicon surface to generate Cu nanoparticles (CuNP*) expressed
as follows:

Cu2+ + H2O2 → CuNP* (3)
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In this process, a part of the silicon (Si) surface is oxidized to Si*, and H2O2 decomposes
into H2O and O2. Next, the formed CuNPs promote etching of the silicon surface. Here, an
etchant of HF (hydrofluoric acid) is used to selectively remove a specific crystal plane (111)
of the silicon as follows:

Si* + 6HF + nh+ → H2SiF6 + nh+ (4)

Here, the silicon is continuously etched by repeating this process. In the early stage
of etching, the process proceeds isotropically, but as time passes, the concentration of
hydrogen peroxide decreases, and the etching proceeds anisotropically due to the influence
of copper. CuNPs continue to promote etching, but silicon is etched only in a specific
direction, forming the desired structure. After etching, residual copper is removed through
concentrated nitric acid treatment, and the etched silicon surface forms an inverted pyramid
structure according to the crystal direction. The etching times were 3, 5, and 10 min. After
a predetermined etching time, the silicon substrate was removed from the etching solution
and immediately immersed in water to prevent further etching.

As illustrated in Figure 2b, the piranha cleaning process makes the surface of the silicon
mold hydrophilic via surface functionalization with silanol groups (Si-OH) during the
oxidation process. For this reason, FOTS treatment was used to change the functionalized
surface back to hydrophobic. Figure 2c shows the process of obtaining PDMS molds from
the hydrophobic silicon molds.
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Figure 3 presents SEM images of silicon and PDMS molds. Figure 3a shows the surface
morphology of a (100) silicon wafer etched using 5 mM Cu(NO3)2, 4.6 M HF, and 0.55 M
H2O2, with the residual Cu nanoparticles removed. The etching rate for silicon wafers
differs depending on the crystallographic orientation of the substrate, generally decreasing
in the order of (100) ≈ (110) > (111). As the etching time increased from 3 to 5 to 10 min,
an inverted pyramid structure was observed in the silicon mold. Etching for 3 min led
to a uniform distribution of inverted pyramids over the surface, with the enlarged image
revealing sharp, defined features. With 5 min of etching, the inverted pyramids were
cleaner, deeper, and square-shaped, with the enlarged image showing sharper edges and a
greater depth. After etching for 10 min, the surface clarity disappeared, and the enlarged
image showed an irregular surface.

Micromachines 2024, 15, x 7 of 13 
 

 

 
Figure 3. SEM images of silicon and PDMS molds. (a) SEM images of microstructures at a magnifi-
cation of 50× on silicon molds etched for 3, 5, and 10 min in a mixture of 5 mM Cu(NO3)2, 4.6 M HF, 
and 0.55 M H2O2 (inset: higher magnification view of the microstructures). (b) SEM image of micro-
structures at a magnification of 50× on the PDMS mold fabricated from the silicon mold in (a) etched 
for 3, 5, and 10 min (inset: higher magnification view of the microstructures). 

3.2. Experimental Results 
The fabrication process and Raman spectral characteristics of the proposed resistive 

pressure sensor based on PEDOT:PSS thin films and PDMS with micropyramid structures 
of random height are presented in Figure 4. The PEDOT:PSS was coated onto the PDMS 
mold following the process outlined in Figure 4a, and Figure 4b displays the resulting 
resistive pressure sensor based on a PDMS/PEDOT:PSS, a pair of which are aligned to face 
each other and then connected to electrodes to produce the sensing device. The sensor was 
square, with a size of 20 × 20 mm2. Figure 4c presents the Raman scattering characteristics 
of the PEDOT:PSS composite. PEDOT is a conducting polymer, while PSS is nonconduct-
ing. Strong vibrations of the C𝛼 = Cβ bonds are the primary characteristic of the PEDOT 
peaks, whereas PSS peaks are more prominent at lower Raman shifts. In the Raman spec-
trum for PEDOT:PSS, the peaks at 1250 cm⁻¹, 1365 cm⁻¹, 1425 cm⁻¹, and 1550 cm⁻¹ are as-
sociated with vibrational modes of PEDOT, while the peaks at 990 cm⁻¹ and 1180 cm⁻¹ are 
characteristic of PSS. These distinct vibrational modes of PEDOT and PSS can be used to 
study the composition ratio, interactions, and structural changes within the composite. 

Figure 3. SEM images of silicon and PDMS molds. (a) SEM images of microstructures at a mag-
nification of 50× on silicon molds etched for 3, 5, and 10 min in a mixture of 5 mM Cu(NO3)2,
4.6 M HF, and 0.55 M H2O2 (inset: higher magnification view of the microstructures). (b) SEM image
of microstructures at a magnification of 50× on the PDMS mold fabricated from the silicon mold in
(a) etched for 3, 5, and 10 min (inset: higher magnification view of the microstructures).

Figure 3b presents SEM images of the pyramid structure of the PDMS mold obtained
from the silicon mold. With 3 min of etching, uniformly arranged pyramids appeared on
the surface, with the enlarged image revealing distinct individual block shapes. After 5 min
of etching, a uniform distribution of more pronounced, deep square-shaped pyramids was
observed, with the enlarged image showing well-formed block shapes. With an etching
time of 10 min, the surface pattern became irregular, and individual pyramid shapes
became indistinct.

Collectively, the SEM images demonstrated that the etching time had a significant
effect on the surface morphology of the silicon and PDMS molds. The silicon mold tended
to exhibit more distinct and sharp features than the PDMS mold. Based on the results, 5 min
was selected as the optimal etching time for both molds to obtain well-defined surface
features, and these molds were used in subsequent analyses.

3.2. Experimental Results

The fabrication process and Raman spectral characteristics of the proposed resistive
pressure sensor based on PEDOT:PSS thin films and PDMS with micropyramid structures
of random height are presented in Figure 4. The PEDOT:PSS was coated onto the PDMS
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mold following the process outlined in Figure 4a, and Figure 4b displays the resulting
resistive pressure sensor based on a PDMS/PEDOT:PSS, a pair of which are aligned to
face each other and then connected to electrodes to produce the sensing device. The
sensor was square, with a size of 20 × 20 mm2. Figure 4c presents the Raman scattering
characteristics of the PEDOT:PSS composite. PEDOT is a conducting polymer, while PSS
is nonconducting. Strong vibrations of the Cα = Cβ bonds are the primary characteristic
of the PEDOT peaks, whereas PSS peaks are more prominent at lower Raman shifts. In
the Raman spectrum for PEDOT:PSS, the peaks at 1250 cm−1, 1365 cm−1, 1425 cm−1, and
1550 cm−1 are associated with vibrational modes of PEDOT, while the peaks at 990 cm−1

and 1180 cm−1 are characteristic of PSS. These distinct vibrational modes of PEDOT and
PSS can be used to study the composition ratio, interactions, and structural changes within
the composite.
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Figure 5 shows the pressure sensitivity and response characteristics of the resistive
pressure sensor based on PDMS coated with PEDOT:PSS with micropyramid structures
of arbitrary height. Figure 5a shows a schematic diagram of the pressure measurement
setup. The measurements were performed by placing precision weights corresponding
to pressures in the range of 0.35 kPa to 2.58 kPa on the sensor surface, and the data were
obtained using a Keithley 2400 source meter operated by the LabVIEW acquisition program.

Figure 5b shows the relative current changes (∆I/I0) when pressure loads are applied
to the sensor. As the pressure increases, the relative current increases linearly from a
measurement sensitivity of 391 kPa−1 to 1.48 kPa. The R² value is 0.96, indicating a strong
linear relationship between the pressure and current changes. The dynamic range of the
sensor is 0.35 kPa to 2.58 kPa. The linear range of the sensor output responds linearly to
the input pressure (0.3 to 1.48 kPa).
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Figure 5. Pressure-sensing sensitivity and response characteristics of the proposed resistive pres-
sure sensor based on PEDOT:PSS-coated PDMS with micropyramid structures of arbitrary heights.
(a) Schematic of the pressure measurement setup. (b) Relative current changes (∆I/I0) according to
different pressures (kPa) showing the dynamic range and linear range of the developed pressure
sensor. (c) Response and recovery time. (d) Current response to changes in the pressure. Each peak
represents the sensor’s response to a change in pressure.

Figure 5c presents the response speed of the sensor in terms of the time required for
the current to reach specific thresholds of 90% of the rise time (the signal rises from 10% to
90%) and 10% of the fall time (the signal falls from 90% to 10%). When an external load was
applied, a rise time of 52.91 ms was observed. After reaching a consistent current with the
load applied, the sensor’s initial current was restored when the external load was removed.
The observed fall time was 4.38 ms. These short rise and fall times demonstrate that the
sensor can respond quickly.

Figure 5d displays the current response pattern according to changes in pressure for
the sensor. The numbers in blue text represent the pressure in kPa that corresponds to the
current response of each peak. The results highlight the repeatability of the sensor response
when the load pressure is repeatedly increased and reduced from 0 to 1.48 kPa. As the
pressure increased, the current also tended to increase. In practical sensor applications,
sensitivity and response time are important metrics, and our proposed sensor demonstrates
high sensitivity and a rapid response time.

Table 1 summarizes recent advances in pressure sensors based on typical performance
parameters including materials, sensitivity, pressure ranges, and response time. The
PDMS/PEDOT:PSS sensor developed in this study exhibits higher sensitivity (391 kPa−1)
than the other materials, especially in the low-pressure range (0 to 2.65 kPa). The PDMS/
PEDOT:PSS sensor has a response time of 52.91 ms, which is comparable to some of the
other sensors but faster than the MXene- and carbon nanostructure-based sensors and
slower than the CNT/PDMS and aligned Ni/PDMS sensors.
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Table 1. Several flexible piezoresistive pressure sensors reported in the literature.

Materials Sensitivity Pressure Range Response Time Reference

MXene 148.26 kPa−1 0~16 kPa 120 ms [48]
Urchin-like hollow

carbon spheres 260.3 kPa−1 1~10,000 Pa 30/60 ms [49]

CNT/PDMS 15.1 kPa−1 - 4 ms [50]
Carbon nanostructure
on patterned PDMS 1.214 kPa−1 0~100 Pa 266/766 ms [51]

Carbon
nanofibers/PDMS 0.60 kPa−1 0~1 kPa 30/25 ms [52]

MXene on patterned
PDMS 2.6 kPa−1 0~30 kPa 40/40 ms [53]

Aligned Ni/PDMS 0.72 kPa−1 at
357 kPa

373 kPa ~12/~20 ms [54]

PDMS/PEDOT:PSS 391 kPa−1 0.3~1.48 kPa 52.91 ms This work

Figure 6 presents the cyclic loading/unloading test response characteristics of the
resistive pressure sensor based on the developed PDMS with micropyramid structures of
random height and a PEDOT:PSS coating. The response characteristics were measured
using a source meter. The experiments used paired microstructured PDMS sensors (etching
time = 5 min). To characterize the mechanical stability of the sensor, the device was
continuously measured for approximately 150 cycles at a pressure of 1.25 kPa. Even after
150 cycles of measurement, the sensor maintained stable performance.
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Figure 6. Current response of the proposed resistive pressure sensor based on microstructured
PDMS/PEDOT:PSS when a pressure of 1.25 kPa is repeatedly loaded and unloaded for 150 cycles.

4. Conclusions

In this study, we developed and demonstrated a resistive pressure sensor with en-
hanced sensitivity based on a PDMS/PEDOT:PSS bilayer structure with micropyramids
of random heights. The originality of this research lies in the fabrication of micropyramid
structures with random heights through the CACE process as well as an evaluation of
electrical characteristics for the use of highly sensitive pressure sensors. The sensing mech-
anism was the change in resistance to pressure when constant pressure was applied to the
upper surface of the sensor. The resistive pressure sensor was fabricated using a silicon
mold that was etched with etching times of 3, 5, and 10 min, and this mold was used to
produce the PDMS mold. The structure of these molds was investigated using SEM images,
and the properties of the PEDOT:PSS composite were analyzed using Raman spectroscopy.
A sensor device with a pair of microstructured PDMS sensors (etching time of 5 min) was
used to test the pressure-sensing sensitivity and response characteristics of the fabricated
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resistive pressure sensor device. The sensor characteristics were measured over a load
range of 0 to 2.58 kPa. The sensitivity was 391 kPa−1 in the range of 0.3 to 1.48 kPa and the
R² value was 0.96, indicating a strong linear relationship between the pressure and current
changes. The dynamic range of the sensor was 0.35 kPa to 2.58 kPa. The sensor’s rise
and fall times were 52.01 ms and 4.38 ms, respectively, representing a rapid response time.
This newly developed resistive pressure sensor can be widely used in various applications
including wearable electronic devices and electronic skin.

Author Contributions: Conceptualization, methodology, software, validation, formal analysis, in-
vestigation, writing, S.K., D.Y.K.; supervision, D.Y.K.; project administration, S.K., D.Y.K.; funding,
D.Y.K. All authors have read and agreed to the published version of the manuscript.
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