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Abstract: Retinal pigment epithelium (RPE) cell dysfunction caused by excessive oxidative damage is
partly involved in age-related macular degeneration, which is among the leading causes of visual im-
pairment in elderly people. Here, we investigated the protective role of chrysoeriol against hydrogen
peroxide (H2O2)-induced oxidative stress in RPE cells. The cellular viability, reactive oxygen species
(ROS) generation, and mitochondrial function of retinal ARPE-19 cells were monitored under oxida-
tive stress or pre-treatment with chrysoeriol. The expression levels of mitochondrial-related genes
and associated transcription factors were assessed using reverse transcription–quantitative poly-
merase chain reaction (RT-qPCR). Moreover, the protein expression of antioxidant signal molecules
was characterized by Western blot analysis. Chrysoeriol significantly increased cell viability, reduced
ROS generation, and increased the occurrence of antioxidant molecules in H2O2-treated ARPE-19
cells. Additionally, mitochondrial dysfunction caused by H2O2-induced oxidative stress was also
considerably diminished by chrysoeriol treatment, which reduced the mitochondrial membrane
potential (MMP) and upregulated mitochondrial-associated genes and proteins. Chrysoeriol also
markedly enhanced key transcription factors (Nrf2) and antioxidant-associated genes (particularly
HO-1 and NQO-1). Therefore, our study confirms the protective effect of chrysoeriol against H2O2-
induced oxidative stress in RPE cells, thus confirming that it may prevent mitochondrial dysfunction
by upregulating antioxidant-related molecules.

Keywords: chrysoeriol; antioxidants; mitochondrial function; retinal pigment epithelium; age-related
macular degeneration

1. Introduction

Age-related macular degeneration (AMD) is a serious retinal disease that causes
irreversible loss of central visual function primarily in the elderly populations of developed
countries. AMD is classified into two major forms—a non-neovascular dry form and
a neovascular exudative wet form [1,2]. Dry AMD (atrophy-associated AMD) causes
alterations in the pigment cell layer, which contains the retinal pigment epithelium (RPE)
and sub-retinal sediments, due to lipid and protein accumulation between these cells and
Bruch’s membrane (also known as drusen). These processes eventually result in RPE cell
death, photoreceptor malfunction, and central vision loss [1–3]. Currently, anti-vascular
endothelial growth factor (anti-VEGF) therapy has been successfully used to treat wet
AMD; however, effective treatments for dry AMD are not available yet [4,5]

Although the etiological mechanisms of dry AMD are not known, patients with this
condition exhibit elevated oxidative stress and inflammation in the RPE [5–7]. RPE cells
exhibit high metabolic rates with enriched mitochondrial populations, and the oxidative
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phosphorylation processes associated with mitochondrial function produce adenosine triphos-
phate (ATP), which in turn leads to the generation of high amounts of reactive oxygen species
(ROS) [8] Thus, RPE cells are constantly in contact with abundant endogenous ROS. Long-term
accumulation of oxidative damage leads to RPE cell dysfunction and increases the cellular
susceptibility to oxidative stress. ROS predominantly target mitochondria and compromise
their membrane integrity, consequently disrupting the mitochondrial membrane potential
(∆Ψm, MMP), causing mitochondrial dysfunction, and jeopardizing the survival of the cell.
Therefore, intramitochondrial oxidative stress is closely linked to cell survival and other
related processes including mitochondrial flexibility, apoptosis, and autophagy in AMD [9].
Thus, protecting RPE cells from oxidative damage is crucial to prevent AMD.

Flavonoids, a group of polyphenol compounds, are a well-characterized major class
of phytochemicals. Herbal medicine has traditionally been used to improve metabolism,
and several compounds have been reported to possess antioxidant and anti-inflammatory
properties [10]. Flavonoids are widely found in nature and common food items. Thus, these
compounds can be used as dietary supplements for disease prevention. Chrysoeriol (5,7-
dihydroxy-2-(4-hydroxy-3-methoxyphenyl)chromen-4-one) (Figure 1A, CHE) is a flavonoid
compound that is commonly found in plants of the genus Perilla frutescens. This compound
has been reported to possess several health-beneficial properties, including antioxidant [11–13],
anti-inflammatory [14,15], anti-tumor [16–18], anti-osteoporosis [19], and hepatoprotective [20]
properties. However, the antioxidant effects of chrysoeriol on RPE cells in AMD patients
and its potential to regulate mitochondrial function remain unknown. Therefore, our study
sought to investigate the effects of chrysoeriol on H2O2-induced oxidative stress, mitochondrial
dysfunction, and cell death in ARPE-19 cells. Our findings show that chrysoeriol can protect
RPE cells from H2O2-induced oxidative stress and associated mitochondrial dysfunction by
upregulating antioxidant proteins and modulating mitochondrial dynamics.
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Figure 1. Protective effects of chrysoeriol (CHE) against H2O2-induced cytotoxicity in ARPE-19 
cells. (A) Schematic drawing of the structures of the CHE complexes. (B) Cells were treated with 
CHE (2.5–40 μM) or 0.1% DMSO (vehicle control) for 24–72 h, and the cell viability was measured. 
(C) Cells were treated with H2O2 (0.125–2 mM) for 24 h, and the cell viability was measured. (D) 
Cells were pre-treated with CHE at the indicated concentrations or 0.1% DMSO (vehicle control) 
for 2 h and then incubated with or without 500 μM H2O2 for 24 h. N-acetyl-cysteine (NAC, 4 mM) 
was used as an antioxidant control. Cell viability was measured via the CCK-8 assay (B, C, and D). 
* p < 0.05, ** p < 0.01, *** p < 0.001, versus the control group; ## p < 0.01, ### p < 0.001, versus the 
H2O2-treated group. 

2. Results 
2.1. Chrysoeriol Protected ARPE-19 Cells Against H2O2-induced Death 

To evaluate the optimal concentration of chrysoeriol (Figure 1A) to be used without 
causing cytotoxicity, ARPE-19 cells were incubated with various concentrations of 
chrysoeriol for 24, 48, and 72 h. As shown in Figure 1B, chrysoeriol (2.5–10 μM) did not 
exert any visible cytotoxic effect on ARPE-19 cells compared with the control group. In 
contrast, chrysoeriol concentrations between 20 and 40 μM decreased the cell viability 
after 48 and 72 h. Therefore, chrysoeriol was administered at the concentrations of 2.5 and 
5 μM in the subsequent experiments. To determine a suitable H2O2 concentration for the 
induction of oxidative damage, the cells were exposed to various doses of H2O2 for 24 h. 
H2O2 significantly reduced the cell viability to approximately 55% when used at 500 μM, 
and thus this concentration was utilized in the subsequent experiments (IC 50; 528 ± 4.2 
μM, Figure 1C). To test the protective effect of chrysoeriol on H2O2-induced cell death, the 
cells were pre-treated with chrysoeriol for 2 h before being exposed to H2O2 for 24 h. As 
illustrated in Figure 1D, the pre-treatment with chrysoeriol significantly prevented the 
H2O2-induced death of ARPE-19 cells almost as much as the pre-treatment with N-acetyl-
cysteine (NAC), used as an antioxidant control. 

Figure 1. Protective effects of chrysoeriol (CHE) against H2O2-induced cytotoxicity in ARPE-19 cells. (A) Schematic drawing
of the structures of the CHE complexes. (B) Cells were treated with CHE (2.5–40 µM) or 0.1% DMSO (vehicle control) for
24–72 h, and the cell viability was measured. (C) Cells were treated with H2O2 (0.125–2 mM) for 24 h, and the cell viability
was measured. (D) Cells were pre-treated with CHE at the indicated concentrations or 0.1% DMSO (vehicle control) for 2 h
and then incubated with or without 500 µM H2O2 for 24 h. N-acetyl-cysteine (NAC, 4 mM) was used as an antioxidant
control. Cell viability was measured via the CCK-8 assay (B, C, and D). * p < 0.05, ** p < 0.01, *** p < 0.001, versus the
control group; ## p < 0.01, ### p < 0.001, versus the H2O2-treated group.
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2. Results
2.1. Chrysoeriol Protected ARPE-19 Cells against H2O2-Induced Death

To evaluate the optimal concentration of chrysoeriol (Figure 1A) to be used with-
out causing cytotoxicity, ARPE-19 cells were incubated with various concentrations of
chrysoeriol for 24, 48, and 72 h. As shown in Figure 1B, chrysoeriol (2.5–10 µM) did not
exert any visible cytotoxic effect on ARPE-19 cells compared with the control group. In
contrast, chrysoeriol concentrations between 20 and 40 µM decreased the cell viability
after 48 and 72 h. Therefore, chrysoeriol was administered at the concentrations of 2.5
and 5 µM in the subsequent experiments. To determine a suitable H2O2 concentration for
the induction of oxidative damage, the cells were exposed to various doses of H2O2 for
24 h. H2O2 significantly reduced the cell viability to approximately 55% when used at
500 µM, and thus this concentration was utilized in the subsequent experiments (IC 50;
528 ± 4.2 µM, Figure 1C). To test the protective effect of chrysoeriol on H2O2-induced
cell death, the cells were pre-treated with chrysoeriol for 2 h before being exposed to
H2O2 for 24 h. As illustrated in Figure 1D, the pre-treatment with chrysoeriol significantly
prevented the H2O2-induced death of ARPE-19 cells almost as much as the pre-treatment
with N-acetyl-cysteine (NAC), used as an antioxidant control.

2.2. Chrysoeriol Suppressed H2O2-Induced Oxidative Stress in ARPE-19 Cells

Excessive ROS accumulation is considered to be one of the primary sources of cell
damage. Using the fluorescence probes 2,7-dichlorofluorescein diacetate (H2DCFDA) and
dihydroethidium (DHE), the intracellular ROS levels in H2O2-treated ARPE-19 cells were
quantitated. As shown in Figure 2, 500 µM H2O2 significantly increased the fluorescent
intensities of H2DCFDA (A) and DHE (B) in the ARPE-19 cells compared with the con-
trol group. However, pre-treating ARPE-19 cells with chrysoeriol substantially decreased
the ROS levels compared with the levels in the cells treated with H2O2 alone (Figure 2A,B).
The suppressive activity of chrysoeriol was also evident in the H2DCFDA fluorescence
image (Figure 2C). Additionally, the ROS levels in the cells treated with chrysoeriol alone
were not significantly different than the levels in untreated cells. To examine the poten-
tial protective properties of chrysoeriol against oxidative damage, the expression levels
of genes encoding the antioxidant proteins SOD1, SOD2, catalase (CAT), and GPx were
assessed using reverse transcription–quantitative polymerase chain reaction (RT-qPCR)
(Figure 3A). According to our gene expression analyses, chrysoeriol pre-treatment signifi-
cantly increased the expression of antioxidant genes (particularly SOD2 and GPx) compared
with the expression levels in the cells treated with H2O2 alone. Additionally, chrysoeriol
pre-treatment, versus H2O2 treatment alone, markedly upregulated HO-1, NQO-1, and
Nrf2 expression (Figure 3B). Moreover, as shown in Figure 3C, pre-treatment with chrysoe-
riol markedly enhanced Nrf2 protein expression levels, which was largely abrogated by
treatment with H2O2. Although the expression of HO-1 and NQO-1 was lower than that
of Nrf2, these genes exhibited the same protein expression trends as Nrf2 (Figure 3C,D).
Interestingly, Nrf2 protein level significantly increased by chrysoeriol treatment alone in
normal ARPE-19 cells. These results suggest that chrysoeriol is a potent activator of Nrf2
expression in ARPE-19 cells.
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Figure 2. Protective effects of CHE against H2O2-induced ROS generation in ARPE-19 cells. Cells were pre-treated with
2.5, 5, or 10 µM CHE or 0.1% DMSO (vehicle control) for 2 h and then incubated with or without 500 µM H2O2 for an
additional 24 h. Afterward, ROS levels were measured by using DCFDA (A) or DHE (B). Representative images of the cells
evaluated by DCFDA staining. (C) N-acetyl-cysteine (NAC, 4 mM) was used as an antioxidant control. *** p < 0.001, versus
the control group; ### p < 0.001, versus the H2O2-treated group. Scale bar: 100 µm.
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TFAM) and DNA replication genes (polymerase (DNA-directed), gamma (POLG)) were 
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Figure 3. Involvement of the HO-1/ Nrf2 axis in the antioxidant effects of CHE. Cells were pre-treated with 2.5 or 5 µM
CHE or 0.1% DMSO (vehicle control) for 2 h and then incubated with or without 500 µM H2O2 for an additional 24 h.
Afterwards, the cells were harvested to extract RNA and protein. Expression analysis of antioxidant marker genes via
RT-qPCR. All the gene expression data were analyzed using Student’s t-test (A,B). (C) Cells were pre-treated with 5 µM
CHE or 0.1% DMSO for 2 h and then incubated with or without 500 µM H2O2 for an additional 24 h. HO-1, NQO-1, and
Nrf2 protein levels were quantified via Western blot analysis. (D) HO-1, NQO-1, or Nrf2 expression level was plotted
relative to the control level. * p < 0.05, ** p < 0.01, *** p < 0.001, versus the control group; # p < 0.05, ## p < 0.01, ### p < 0.01,
versus the H2O2-treated group.

2.3. Chrysoeriol Enhanced Mitochondrial Function by Upregulating Mitochondrion-Related Genes

Growing evidence has linked the activation of Nrf2 expression to mitochondrial
function and integrity under stressful conditions [21–23]. Therefore, to further determine
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whether chrysoeriol is involved in mitochondrial function, the mitochondrial membrane
potential (MMP, ∆Ψm) of ARPE-19 cells was characterized by analyzing their red/green
fluorescence intensity ratio via the JC-10 assay. As shown in Figure 4A, the ARPE-19
cells exposed to 500 µM H2O2 exhibited a reduced red/green fluorescence intensity ratio,
indicating ∆Ψm dissipation, as in the cells treated with carbonyl cyanide m-chlorophenyl
hydrazone (CCCP; i.e., a mitochondrial oxidative phosphorylation uncoupler). However,
pre-treatment with chrysoeriol at 2.5 or 5 µM for 2 h improved the H2O2-induced ∆Ψm
reduction similarly to the antioxidant positive control (NAC) (Figure 4A). Additionally,
chrysoeriol alone did not have a significant effect on the MMP of ARPE-19 cells compared
with the control cells. To understand the underlying mechanisms by which chrysoeriol pro-
tects mitochondrial function, the expression of mitochondrial respiration and mitochondrial
dynamics genes was studied via RT-qPCR. As illustrated in Figure 4B, the mRNA levels
of mitochondrial transcription factors (transcription factor A, mitochondrial TFAM) and
DNA replication genes (polymerase (DNA-directed), gamma (POLG)) were significantly
increased by chrysoeriol pre-treatment compared with H2O2-alone treatment. Moreover,
the expression levels of oxidative phosphorylation (OXPHOS)-associated genes, including
ATP synthase subunit O (ATP5O), COX4I1 (cytochrome c oxidase subunit 4 isoform 1),
cytochrome c oxidase subunit 5B (COX5b), and NADH dehydrogenase (ubiquinone) 1
beta subcomplex 5 (NDUFB5), were significantly increased by chrysoeriol pre-treatment
compared with H2O2-alone treatment or DMSO treatment (Figure 4C). Moreover, the
expression levels of genes related to mitochondrial dynamics, such as fission 1 (FIS1) and
mitofusin 1 and 2 (MFN1 and 2), were significantly upregulated in the cells pre-treated with
chrysoeriol compared with the levels in H2O2-alone-treated or control cells (Figure 4D).
These results suggest that the protective effect of chrysoeriol against H2O2-induced cell
damage in ARPE-19 cells is mediated through the upregulation of mitochondrial biogene-
sis genes.
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Figure 4. (A) CHE attenuated H2O2-induced mitochondrial membrane potential loss. After pre-treatment with 2.5 or 5 µM
CHE for 2 h, ARPE-19 cells were incubated with or without 500 µM H2O2 for an additional 24 h. Red/green fluorescence
intensity was quantified via the JC-10 assay (A). Carbonyl cyanide m-chlorophenyl hydrazone (CCCP, 40 µM) and N-acetyl-
cysteine (NAC, 4 mM) were used as positive and antioxidant controls, respectively. CHE upregulated the expression of
replication genes (B), oxidative phosphorylation (OXPHOS) target genes (C), and mitochondrial dynamics genes (D) in
ARPE-19 cells. Relative gene expression of the replication genes (B), OXPHOS genes (C), and mitochondrial dynamic genes
(D) in ARPE-19 cells treated for 2 h with 2.5 or 5 µM CHE and then incubated with or without 500 µM H2O2 for an additional
24 h. * p < 0.05, ** p < 0.01, versus control group; # p < 0.05, ## p < 0.01, ### p < 0.001, versus the H2O2-treated group.
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2.4. Chrysoeriol Regulated Mitochondrial Process Proteins

Oxidative stress is one of the major contributors to mitochondrial function, due to
its modulatory effects on mitochondrial fusion and fission dynamics [24–26]. To further
characterize the protective role of chrysoeriol in mitochondrial processes triggered by
H2O2, Western blot analyses were conducted to quantify the levels of crucial mitochondrial
proteins. As shown in Figure 5, when ARPE-19 cells were exposed to chrysoeriol, TOM-20
(i.e., an outer mitochondrial membrane (OMM) marker) and MFN2 were significantly
upregulated compared with the levels in cells treated with H2O2 alone or in the standard
control. Interestingly, 5 µM chrysoeriol treatment alone upregulated TOM20 but not MFN2.
Compared with the levels in the control cells, 500 µM H2O2 upregulated optic atrophy pro-
tein 1 (OPA1) and dynamin-related protein 1 (DRP1). However, chrysoeriol pre-treatment
increased OPA1 and decreased DRP1 levels compared with the levels in the H2O2-alone-
treated group. Additionally, DRP1 Ser 616 phosphorylation was substantially reduced
upon chrysoeriol pre-treatment compared with H2O2-alone treatment (Figure 5B). All ex-
pression levels were normalized to those of GAPDH. Together, our findings demonstrate
that chrysoeriol may balance mitochondrial dynamics in ARPE-19 cells.
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2.5. Chrysoeriol-Mediated Activation of p38 and Mitochondrial-Related Genes

The p38 mitogen-activated protein kinase (MAPK) activation is related to redox
signaling transduction via stimulation of stress responses, including mitochondrial dys-
function [27–31]. Therefore, the protective antioxidant effect of chrysoeriol on the p38
MAPK pathway was determined in ARPE-19 cells. Western blot analysis results reveal that
the total intracellular p38 level was largely unaffected; however, the activated form of p38
(pp38) was significantly upregulated in the H2O2-treated group. In contrast, when ARPE-
19 cells were co-exposed to chrysoeriol and H2O2, the pp38 protein level was substantially
decreased compared with that of the H2O2 control (Figure 6A,B). Next, we sought to de-
termine whether MAPK inhibitors mediate the phosphorylation of p38 and the protective
effects of chrysoeriol. Cell viability was increased in the cells pre-treated with chrysoeriol
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compared with H2O2-alone-treated cells. The antioxidant effects of chrysoeriol were not
affected by the other inhibitors (PD 98059; MEK/ERK pathway inhibitor, SP600125; c-Jun
N-terminal kinase (JNK) inhibitor, and LY 294002; phosphatidylinositol 3-kinase (PI3K)
inhibitor). However, treatment with SB203580 (p38 inhibitor) significantly decreased cell
viability in the chrysoeriol pre-treatment group (Figure 6C). To characterize the role of p38
activation in Nrf2 signaling regulation, ARPE-19 cells treated with a p38 inhibitor were
also assessed by Western blot analysis. The chrysoeriol and H2O2 co-treated group exhib-
ited an upregulation in Nrf2 and HO-1 expression, whereas the SB203580-treated group
exhibited a decrease in Nrf2 and HO-1 expression (Figure 6D). The protein expression
levels in Figure 6D were normalized to those of GAPDH (Figure 6E). SB203580 significantly
blocked chrysoeriol-induced antioxidant molecules such as Nrf2 and HO-1 compared to
the chrysoeriol and H2O2 co-treatment group. These findings indicate that the activation
of the p38 pathway mediates the antioxidant effects of chrysoeriol and the activation of
Nrf2 signaling in H2O2-induced damaged ARPE-19 cells.
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Figure 6. CHE inhibits the activation of p38 MAPK during H2O2-induced oxidative stress, and p38 MAPK inhibition
mediates CHE-induced Nrf2 activation. (A) ARPE-19 cells were treated with or without 5 µM CHE for 2 h and then treated
with H2O2 for 30 min. (C) Cells were pre-treated with a specific kinase inhibitor (PD98059 (ERK), SP600125 (JNK), SB203580
(p38), or LY 294002 (PI3K)) at 10 µM for 2 h, 5 µM CHE for another 2 h, and then followed by treatment with 500 µM H2O2

for 24 h. Cell viability was quantified via the CCK-8 assay. (D) ARPE-19 cells were pre-treated with a p38 inhibitor at
10 µM for 2 h, 5 µM CHE for another 2 h, and then treated with 500 µM H2O2 for 24 h. The protein levels of p38, pp38,
HO-1, NQO-1, and Nrf2 were assessed via Western blotting. (B,E) The quantitative analysis of the p38, pp38, HO-1, NQO-1,
and Nrf2 levels was performed via densitometric measurements relative to the control. ** p < 0.01, *** p < 0.001, versus
control group; ## p < 0.01, ### p < 0.001, versus the H2O2-treated group; ++ p < 0.01, +++ p < 0.001, versus the H2O2 and
chrysoeriol-treated group.
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2.6. Chrysoeriol Protected ARPE-19 Cells from Sodium Iodate-Induced Oxidative Damage

Sodium iodate (NaIO3) is an oxidizing agent that promotes ROS generation and is
specifically toxic to RPE cells by inducing mitochondrial dysfunction [32–35]. To investigate
this effect further, cells were exposed to NaIO3. A NaIO3 concentration of 20 mM signif-
icantly reduced cell viability by approximately 50%, whereas chrysoeriol pre-treatment
significantly suppressed the NaIO3-induced reduction in ARPE-19 cell viability (Figure 7A).
As shown in Figure 7B, compared with the control group, 20 mM NaIO3 caused a significant
increase in the fluorescence intensities of H2DCFDA (B) and DHE (C) in the ARPE-19 cells.
However, pre-treatment with chrysoeriol in the ARPE-19 cells substantially suppressed
these increases compared with the levels in NaIO3 treatment alone (Figure 7B,C). When
exposed to 20 mM NaIO3, the cells exhibited a reduction in MMP, whereas pre-treatment
with chrysoeriol for 2 h suppressed this effect compared with the cells exposed to NaIO3
alone (Figure 7D). Together, our findings suggest that chrysoeriol could effectively protect
RPE cells against pathological oxidative damage.
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Figure 7. Protective effects of CHE against NaIO3-induced cell damage in ARPE-19 cells. (A) Cells were pre-treated with
CHE at the indicated concentrations or 0.1% DMSO (vehicle control) for 2 h and then incubated with or without 20 mM
of NaIO3 for an additional 24 h. Cell viability was measured via the CCK-8 assay. ROS levels were measured by the
DCFDA (B) and DHE (C) assays. N-acetyl-cysteine (NAC, 4 mM) was used as an antioxidant control. (D) CHE attenuated
NaIO3-induced loss of mitochondrial membrane potential. After pre-treatment with 2.5 or 5 µM CHE for 2 h, ARPE-19 cells
were incubated with or without 20 mM NaIO3 for an additional 24 h. Red/green fluorescence intensity was quantified
via the JC-10 assay (A). Carbonyl cyanide m-chlorophenyl hydrazone (CCCP, 40 µM) and N-acetyl-cysteine (NAC, 4 mM)
were used as positive and antioxidant controls, respectively. *** p < 0.001, versus control group; # p < 0.05, ## p < 0.01,
### p < 0.001 versus the NaIO3-treated group.
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3. Discussion

Age is a key risk factor for the development of AMD, which is largely caused by
oxidative stress resulting from elevated ROS levels. AMD is characterized by abnormal
RPE cell layers, whereby superimposing foveal photoreceptor dysfunction ensues. Addi-
tionally, substantial oxidative stress build-up may fully disrupt the antioxidant systems
and result in irreversible retinal damage [2,36]. Here, we investigated the protective effects
of chrysoeriol (a flavonoid compound) against oxidative damage in human RPE cells.
At the mitochondrial level, chrysoeriol exerts its protective effects via MMP mediation
and its related effector genes, including OXPHOS genes, mitochondrial process genes, and
mitochondrial DNA replication and transcription genes. Notably, chrysoeriol may prevent
oxidative damage by increasing the expression of antioxidant enzymes, mainly HO-1 and
SOD2, via the upregulation of Nrf2 and mitochondrial molecules in ARPE-19 cells. Further-
more, we confirmed that the p38 signaling pathway was involved in chrysoeriol-mediated
RPE cell death. Therefore, our findings highlight the potential therapeutic applicability of
chrysoeriol to prevent or treat AMD, a disease initiated by cell death caused by oxidative
stress and RPE dysfunction.

Excessive intracellular ROS has been linked to RPE cell oxidative damage and dys-
function [37]. Therefore, decreasing intracellular ROS may guard the RPE against oxidative
damage [5,38]. Our study reveals that chrysoeriol markedly diminished H2O2-induced in-
tracellular ROS levels in RPE cells, as demonstrated by our DCFDA and DHE assays. Next,
we characterized the expression of major antioxidant enzymes in ARPE-19 cells, including
SOD1, SOD2, catalase, glutathione peroxidase (GPx), HO-1, and NQO-1. Pre-incubation
with chrysoeriol increased overall antioxidant-related genes (SOD1, SOD2, catalase, GPx,
HO-1, and NQO-1) compared to the H2O2 group. Additionally, chrysoeriol markedly
increased SOD2, HO-1, and NQO-1 expression levels in H2O2-exposed ARPE-19 cells.
These findings indicate that chrysoeriol may possess the ability to scavenge oxygen free
radicals, thereby indirectly combating oxidative stress. Numerous studies have reported
that Nrf2 activation is a major regulator of several antioxidant and detoxification genes in
RPE cells, including downstream targets of Nrf2 [39–44]. Our study suggests that chryso-
eriol activates Nrf2 and increases HO-1 and NQO-1 activity in H2O2-exposed cells, as
demonstrated by RT-qPCR and Western blot analyses.

Mitochondrial dysfunction is a key factor that leads to AMD pathological changes,
including MMP (∆Ψm) reduction and mitochondrial DNA damage [45,46]. Addition-
ally, previous studies have reported an overall reduction in mitochondria numbers in
the RPE of elderly individuals, which was even more severe in AMD patients [47–49].
In this study, we found that pre-treatment with chrysoeriol significantly increased the
MMP compared to H2O2 treatment alone. Next, we analyzed mitochondrial-related gene
expression, and our results demonstrate that chrysoeriol significantly upregulated TFAM,
POLG, ATP5O, COX4I1, COX5B, NDUFB5 MFN1, and MFN2. Mitochondria continuously
undergo fission and fusion processes to maintain mitochondrial function. Mitochondrial
fission and fusion enable the recycling of damaged elements via the segregation of injured
organelles and the exchange of materials with healthy mitochondria [50–52]. DRP1 is a key
mediator of mitochondrial fission, whereas OPA1 is pivotal for mitochondrial membrane
fusion and maintaining proper mitochondrial cristae architecture [50,53,54]. Therefore,
we investigated the expression of crucial mitochondrial process genes including TOM20,
MFN2, OPA1, and DRP1. Our results indicated that chrysoeriol significantly increased
TOM20, MFN2, and OPA1 and decreased DRP1, whereas H2O2 induced DRP1 activation.
Thus, chrysoeriol may improve mitochondrial function and biogenesis, thereby alleviating
H2O2-induced oxidative stress.

MAPKs, ERK1/2, p38, and JNKs, all of which are well-characterized mitogen-activated
protein kinases, are known to be activated by oxidative stress and are involved in cell growth
and death [55,56]. Increasing evidence suggests that regulating the MAPK signaling path-
way, particularly p38 activation, is critical to protect cells from ROS injury and cellular
death [57]. Here, H2O2-induced oxidative stress significantly promoted p38 phospho-
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rylation [58]. Compared with the H2O2 group, p38 phosphorylation was lower in the
chrysoeriol group, suggesting that chrysoeriol exerts its antioxidant effect through the
modulation of the ROS-mediated p38 MAPK signaling pathway. Next, we confirmed
that chrysoeriol treatment decreased p38 phosphorylation, whereas pre-treatment with a
p38 inhibitor and chrysoeriol attenuated the cytoprotective effect of chrysoeriol against
H2O2 in ARPE-19 cells. The p38 pathway negatively regulated the chrysoeriol-induced
Nrf2/HO-1 expression, and treatment with a p38 inhibitor reduced the chrysoeriol-induced
antioxidant protein expression. Recent studies have reported that p38 induces mitochon-
drial fragmentation by mediating DRP1. It has also been reported that PKCδ-activated
p38 MAPK directly phosphorylates DRP1 to induce its mitochondrial translocation and
subsequent mitochondrial fission. Based on our results, inhibition of p38 MAPK pre-
vents mitochondrial dysfunction via inhibition of DRP1 phosphorylation and activation
of Nrf2/HO-1; thus, our study demonstrates that chrysoeriol could lead to improved
mitochondrial function and biogenesis against H2O2-induced oxidative stress in ARPE-19
cells. Furthermore, we demonstrate that chrysoeriol not only exerts antioxidant effects in
H2O2-exposed cells but also in cells exposed to NaIO3, an RPE-specific oxidizing agent
that induces mitochondrial dysfunction.

In conclusion, our study demonstrates the protective effect of chrysoeriol against
oxidative damage to ARPE-19 cells in experimental conditions that were meant to mimic
AMD pathological development. Chrysoeriol exhibited potent antioxidant effects, as ob-
served by increased cell survival, increased antioxidant enzyme expression, decreased ROS
accumulation, increased OXPHOS, and increased mitochondrial-related gene expression,
leading to increased MMP and mitochondrial function via the modulation of mitochon-
drial gene expression. The mechanisms by which chrysoeriol exerted these effects included
the regulation of mitochondrial quality control molecules (e.g., DRP1 and OPA1) via the
modulation of p38/ Nrf2/HO-1 signaling, as well as an increase in antioxidant molecules.
Our study is the first to demonstrate the potential therapeutic applicability of chrysoeriol
for the prevention of dry AMD. However, further studies are needed to determine the
physiological function and biological efficacy of chrysoeriol in both primary human RPE
cells (or at least fully differentiated ARPE-19 cell models) and in vivo models.

4. Materials and Methods
4.1. Materials

The ARPE-19 human retinal pigment epithelial cell line was purchased from ATCC
(Manassas, VA, USA). Dulbecco’s modified Eagle’s medium, Nutrient Mixture F-12 media
(DMEM/F12), fetal bovine serum (FBS), penicillin/streptomycin, and 2,7-dichlorofluorescein
diacetate (H2DCF-DA) were purchased from Thermo Fisher Scientific (Wilmington, DE,
USA). Hydrogen peroxide, dihydroethidium (DHE), JC-10 assay kits, N-acetyl-cysteine
(NAC), and carbonyl cyanide m-chlorophenyl hydrazone (CCCP) were purchased from
Sigma-Aldrich (St. Louis, MO, USA, owned by Merck KGA). The Cell Counting Kit-8
(CCK-8) was purchased from Dojindo Molecular Technologies (Kumamoto, Japan). PD98059,
SP60025, SB202580, and LY294002 were purchased from Cayman Chemical (Ann Arbor,
MI, USA). Antibodies against Nrf-2, NQO-1, and HO-1 were purchased from Abcam
(Cambridge, UK). p38, pp38, TOM20, MFN2, DRP1, OPA1, and p-DRP1 antibodies were
obtained from Cell Signaling Technology (Beverly, MA, USA).

4.2. Preparation of Chrisoeriol
4.2.1. The Source of Chrysoeriol

We cultivated perilla (cultivar name Anyu, Perilla frutescens) seeds in an experimental
field at the National Institute of Crop Science (NICS) in the Rural Development Admin-
istration (RDA), Jeonbuk, Korea, 2019. After harvesting, perilla seeds were immediately
freeze-dried and stored at −40 ◦C.
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4.2.2. Purification Protocol and Purity Analysis of Chrysoeriol

The perilla seed contains approximately 35–40% oil (saturated and unsaturated). To re-
move the crude oil effectively, chrysoeriol was extracted with n-hexane twice. The resulting
residue was extracted with 70% methanol at room temperature and then filtered through
a filter paper. The filtrate residue was concentrated and evaporated to obtain the brown
perilla seed extract. This extract was subjected to column chromatography on a silica gel
(15 × 40 cm, 230–400 mesh, 370 g) by using acetone-di-chloromethane mixtures [1:30, 25:1,
20:1, 10:1, 5:1, 2:1, 1:1, and 1:2] to yield 6 fractions (A–F). Fraction B was re-chromatographed
via silica gel column chromatography (5.5 × 40 cm, 230–400 mesh, 115 g) by using an
acetone-ethylacetated gradient (15:1→1:4) to obtain chrysoeriol (158 mg). The isolated
chrysoeriol was dissolved in methanol to 1.0 mg/mL and analyzed via ultra-high perfor-
mance liquid chromatography (UHPLC)-photodiode array detection (PDA). The analysis
was conducted using a reverse-phase UHPLC (Dionex Ultimate 3000, Thermo Scientific,
Waltham, MA, USA) equipped with a AcclaimTM RSLC Polar Advantage II (2.2 µm 120Å
2.1 × 150 mm) column. The mobile phase was 0.1% acetic acid in water (A) or 0.1% acetic
acid in methanol (B). The solvent flow rate was 0.6 mL/min, and the column temperature
was set at 40 ·C. The gradient was performed as follows: 0–1 min, 10% B; 2 min, 20% B;
2 min, 30% B; 3 min, 50% B; 3 min, 70% B; 5 min, 100% B; 5 min. Following injection of 1 µL
of sample, chrysoeriol was eluted. The NMR (nuclear magnetic resonance) analysis was
performed with 1H and 13C by using a Bruker AM 500 spectrometer [59]. The standard
of chrysoeriol was purchased from ChemFaces (CFN 98785, Wuhan, China). The purity
analysis data are provided in the Supplementary Materials (Figure S1).

4.3. Cell Culture and Cell Viability Assay

ARPE-19 cells were routinely maintained in DMEM/F12 media supplemented with
10% FBS and 1% penicillin/streptomycin at 37 ◦C in a 5% CO2 atmosphere. Cell viability
was assessed using the CCK-8 assay according to the manufacturer’s instructions. Each
experiment was repeated three times with triplicate samples.

4.4. ROS Measurement

Intracellular ROS levels were examined using H2DCF-DA or DHE according to the
manufacturer’s instructions. The fluorescence intensity was measured using a fluorescence
plate reader (Bio-Tek) at Ex/Em = 495/527 nm for H2DCF-DA and Ex/Em = 535/610 nm for
DHE. Afterward, H2DCFDA-stained cell images were obtained using an IX51 fluorescent
microscope coupled with a DP microscope camera controller (Olympus Optical, Japan).

4.5. Mitochondrial Membrane Potential (MMP) Assay

The MMP assay was conducted using the JC-10 MMP assay kit (Merck, St. Louis, MO,
USA) according to the manufacturer’s instructions. In brief, ARPE-19 cells (5 × 103 cells/well)
seeded in a 96-well transparent-bottom black plate (Eppendorf Ltd., Germany) were treated
as described above. After 24 h, the JC-10 dye solution (JC-10 and assay buffer A 1:100 v/v)
was added (50 µL/well) to the control and treated cells. Following the treatment, the plate
was incubated in dark conditions for 30 min. Afterward, assay buffer B (50 µL/well) was
added, and the fluorescence intensity was measured at 490/525 nm (red) and 540/590 nm
(green) using a multimode plate reader (Bio-Tek). The red/green fluorescence intensity ratio
was used to determine the MMP. Carbonyl cyanide m-chlorophenyl hydrazone (CCCP)
and N-acetyl-cysteine (NAC) were used as negative and antioxidant controls, respectively.

4.6. RNA Collection and Quantitative PCR

Total RNA was collected using the TRIzol reagent (Thermo Fisher Scientific) and
resuspended in RNAse-free water. Reverse transcription was performed with 1 µg of RNA
to produce complementary DNA (cDNA) using the SensiFast cDNA synthesis kit (Bioline,
London, UK). RT-qPCR was performed using 3 µL of cDNA template and the Power SYBR
Green Master Mix (Thermo Fisher Scientific) in a StepOnePlus thermocycler (Applied
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system, USA). The primer sequences for GAPDH, SOD1, SOD2, CAT, GPx, HO-1, NQO-1,
Nrf-2, TFBM, POLG, ATP5O, Cox4I1, COX5B, NDUFB, FIS1, MFN1, and MFN2 are listed
in Table 1.

Table 1. Primer sequences.

Target Gene Forward Sequence (5′-3′) Reverse Sequence (5′-3′)

ATP5O CGCTATGCCACAGCTCTTTA AAGGCAGAAACGACTCCTTG
COX4I1 GGCATTGAAGGAGAAGGAGA TCATGTCCAGCATCCTCTTG
COX5B GAGGTGGTGTTCCCACTGAT CAGACGACGCTGGTATTGTC

NDUFB5 CTTCCTCACTCGTGGCTTTC TCTGGGACATAGCCTTCTGG
FIS1 GACATCCGTAAAGGCATCGT ACAGCAAGTCCGATGAGTCC

MFN1 TGCCCTCTTGAGAGATGACC TCTTTCCATGTGCTGTCTGC
MFN2 ATGCATCCCCACTTAAGCAC GCAGAACTTTGTCCCAGAGC
TFAM TAAGACTGCAAGCAGCGAAG TTCTCAGTTTCCCAGGTGCT
POLG TGCAGTGAGGAGGAGGAGTT CCCAGGTAAGTGCCATGAGT
SOD1 GAAGGTGTGGGGAAGCATTA CTTTGCCCAAGTCATCTGCT
SOD2 AAACCTCAGCCCTAACGGTG GCCTGTTGTTCCTTGCAGTG
CAT GATAGCCTTCGACCCAAGCA AGAAGGCTGTTGTTCCGGAG

GPX1 AGTCGGTGTATGCCTTCTCG CAAACTGGTTGCACGGGAAG
HO-1 AGTCTTCGCCCCTGTCTACT GCTTGAACTTGGTGGCACTG

NQO-1 AAAGGACCCTTCCGGAGTAA CGTTTCTTCCATCCTTCCAG
NRF2 GCGACGGAAAGAGTATGAGC ACGTAGCCGAAGAAACCTCA

GAPDH ACCCAGAAGACTGTGGATGG TTCTAGACGGCAGGTCAGGT

4.7. Western Blotting

Cells were lysed in RIPA buffer with protease inhibitors. An equal amount of protein
was separated by 10% SDS-PAGE gel and transferred to PVDF membranes (Millipore,
Bedford, MA, USA). The membrane was blocked with 5% skim milk in TBST, incubated
with a primary antibody overnight at 4 ◦C, and then allowed to react with the secondary
antibodies for 2 h at room temperature. Protein expression levels were evaluated with an
enhanced chemiluminescence kit (Bio-Rad Laboratories, Inc., Hercules, CA, USA).

4.8. Statistics

Statistical analyses were performed using the GraphPad Prism 5 software (GraphPad
Software Inc., La Jolla, CA, USA). All data were reported as mean ± SD. Student’s t-test
was used to calculate pairwise statistical significance between two groups. Statistical
significance was denoted as follows: ns p >0 05; *, # p < 0 05; **, ## p <0 01; ***, ### p < 0 001.

Supplementary Materials: The following are available online, Figure S1: UHPLC chromatogram of
the chrysoeriol compound (purity > 98%).
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Abbreviations

MMP: mitochondrial membrane potential; NAC: N-acetyl-cysteine; CCCP: carbonyl cyanide
m-chlorophenyl hydrazone; H2DCF-DA:2,7-dichlorofluorescein diacetate; DHE: dihydroethidium;
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oxidoreductase 1; HO-1: heme oxygenase-1; TOM-20: translocase of the outer mitochondrial mem-
brane 20; and MFN2: mitofusin 2.
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